Effects of Nitrogen Application Rate and Nitrogen Fertilizer Type on Growth and Development of Potato and Nitrogen Utilization

WANGKexiu, TANGMingxia, CHENGMingjun, HUJianjun, LIBing, LIAOFeifei, LIHuapeng, YANGWenting, GUOZhan, CUIKuoshu

Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 1-11.

PDF(1633 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1633 KB)
Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 1-11. DOI: 10.11924/j.issn.1000-6850.casb2025-0254

Effects of Nitrogen Application Rate and Nitrogen Fertilizer Type on Growth and Development of Potato and Nitrogen Utilization

Author information +
History +

Abstract

To provide a theoretical basis for scientific nitrogen fertilization, increasing yield and economic benefits, and reducing environmental risks, the effects of nitrogen application rate and nitrogen fertilizer type on potato growth, development and nitrogen utilization were studied. Using ‘Xisen 6’ and ‘Chuanyu 62’ as test materials, a randomized block design was employed with five nitrogen application treatments, including a nitrogen-free control (CK), conventional urea nitrogen at 67.5 kg/hm2, slow-release urea nitrogen at 67.5 kg/hm2, conventional urea nitrogen at 135 kg/hm2, and slow-release urea nitrogen at 135 kg/hm2. The results showed that the emergence occurred earlier under low nitrogen treatments compared to high nitrogen treatments. At the same growth stage and nitrogen application level, the emergence rate was higher under slow-release nitrogen fertilizer treatments than that of conventional nitrogen fertilizer treatments. With increasing nitrogen application rate, plant height, leaf area index, and chlorophyll content increased for both varieties. However, excessive nitrogen application reduced stem diameter. Agronomic traits were superior under slow-release nitrogen fertilizer treatments compared to conventional nitrogen fertilizer treatments. Plant nitrogen accumulation increased with higher nitrogen application rates. However, nitrogen agronomic efficiency, nitrogen production efficiency, nitrogen uptake efficiency and nitrogen use efficiency (NUE) significantly decreased. At the same nitrogen application level, NUE was better under slow-release nitrogen fertilizer treatments than under conventional nitrogen fertilizer treatments. Within the experimental range, for ‘Xisen 6’, yield increased significantly with increasing nitrogen application. At the same nitrogen level, yields under slow-release nitrogen fertilizer treatments were significantly higher than under conventional nitrogen fertilizer treatments. The highest yield (58000.3 kg/hm2) was achieved with the 135.0 kg/hm2 slow-release nitrogen treatment, representing a 16.7% increase compared to the same rate of conventional nitrogen fertilizer. The yield of ‘Chuanyu 62’ increased first and then decreased with the increase of nitrogen application rate, and the differences among treatments were significant. The highest yield was achieved under the treatment of 67.5 kg/hm2 of slow-release nitrogen fertilizer, reaching 43294.2 kg/hm2, which was significantly higher than that of the control (CK), compared with the conventional nitrogen fertilizer treatment at the same nitrogen application rate, the yield increased by 5.2%. Compared to conventional nitrogen fertilizer treatments, slow-release nitrogen fertilizer treatments also resulted in better marketable tuber rates and harvest indices. Scientific nitrogen application promoted plant growth and optimized dry matter accumulation and partitioning. Slow-release nitrogen fertilizer significantly improved emergence rate, facilitated higher plant nitrogen accumulation, and enhanced nitrogen use efficiency. Under the ecological conditions of this experimental region, applying slow-release nitrogen fertilizer at 135.0 kg/hm2 for mid-maturing varieties (such as ‘Xisen 6’) and at 67.5 kg/hm2 for mid-late maturing varieties (such as ‘Chuanyu 62’) can achieve higher yields and economic benefits.

Key words

potato / slow-release nitrogen / nitrogen use efficiency / agronomic traits / dry matter accumulation

Cite this article

Download Citations
WANG Kexiu , TANG Mingxia , CHENG Mingjun , et al . Effects of Nitrogen Application Rate and Nitrogen Fertilizer Type on Growth and Development of Potato and Nitrogen Utilization[J]. Chinese Agricultural Science Bulletin. 2026, 42(1): 1-11 https://doi.org/10.11924/j.issn.1000-6850.casb2025-0254

References

[1]
金黎平, 石瑛, 高明杰, 等. 基于大食物观视角的中国马铃薯产业发展路径[A].//中国作物学会马铃薯专业委员会.马铃薯产业与大食物观(2024)[C]. 2024:6.
[2]
卢肖平. 马铃薯主粮化战略的意义、瓶颈与政策建议[J]. 华中农业大学学报(社会科学版), 2015(3):1-7.
[3]
杨雅伦, 郭燕枝, 孙君茂. 我国马铃薯产业发展现状及未来展望[J]. 中国农业科技导报, 2017, 19(1):29-36.
[4]
陆景陵, 胡霭堂. 植物营养学[M]. 北京: 高等教育出版社, 2006.
[5]
张卫峰, 马林, 黄高强, 等. 中国氮肥发展、贡献和挑战[J]. 中国农业科学, 2013, 46(15):3161-3171.
[6]
串丽敏, 何萍, 赵同科, 等. 中国小麦季氮素养分循环与平衡特征[J]. 应用生态学报, 2015, 26(1):76-86.
[7]
刘永红, 郑文涛, 张晋天, 等. 缓/控释肥研究进展及其应用[J]. 华中农业大学学报, 2023, 42(4):167-176.
[8]
蔡连凤, 王学霞, 王甲辰, 等. 不同施氮措施对麦玉轮作系统N2O排放的影响[J]. 环境科学, 2024, 45(10):6148-6156.
[9]
徐宇帆, 申亚珍, 张文太, 等. 腐植酸基质缓释尿素对氮素淋失和氨挥发的阻控[J]. 植物营养与肥料学报, 2024, 30(4):801-811.
[10]
闫双堆, 江慧姝, 董馨宇, 等. 缓/控释硫酸铵减量施用对玉米生长及土壤氮素平衡的影响[J]. 核农学报, 2024, 38(9):1772-1781.
[11]
NAZ M Y, SULAIMAN S A. Slow release coating remedy for nitrogen loss from conventional urea: A review[J]. Journal of controlled release, 2016,225:109-120.
[12]
程冬冬, 赵贵哲, 刘亚青, 等. 土壤温度、土壤含水量对高分子缓释肥养分释放及土壤酶活性的影响[J]. 水土保持学报, 2013, 27(6):216-220.
[13]
李玉东, 谭德水, 李子双, 等. 长期施用控释氮肥对潮土区麦-玉轮作作物产量的影响及土壤氮素供应特征研究[J]. 山东农业科学, 2024, 56(1):119-125.
[14]
马静, 韩四满, 程岚. 包膜尿素配施有机肥对春玉米氮素吸收、产量及土壤团聚体稳定性的影响[J]. 江苏农业科学, 2024, 52(5):94-102.
[15]
张蛟, 陈澎军, 韩继军, 等. 盐逆境下施用缓释肥及其减氮处理对水稻生长、穗部性状、产量及品质的影响[J]. 江苏农业学报, 2023, 39(7):1483-1491.
[16]
彭秋, 徐卫红. 纳米缓释肥氮素释放特性及茎瘤芥营养效应研究[J]. 西南大学学报(自然科学版), 2023, 45(11):31-41.
[17]
GHAFOOR I, HABIB-UR-RAHMAN M, ALI M, et al. Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment[J]. Environmental science and pollution research, 2021, 28(32):43528-43543.
[18]
LI Y M, SUN Y X, LIAO S Q, et al. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato[J]. Agricultural water management, 2017,186:139-146.
[19]
GUERTAL E A. Slow-release nitrogen fertilizers in vegetable production: A review[J]. HortTechnology, 2009, 19(1):16-19.
[20]
黄益孝, 周家昊, 陈照明, 王强, 等. 化肥减量配施缓释肥对单季稻产量和氮素吸收利用的影响[J]. 江苏农业科学, 2024,2:57-64.
[21]
杨勤, 刘禹池, 刘永红, 等. 缓控肥减氮对丘陵区青贮玉米生物产量,氮素利用与平衡的影响[J]. 玉米科学, 2024, 32(1):156-161.
[22]
鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2003.
[23]
于振文. 小麦产量与品质生理及栽培技术[M]. 北京: 中国农业出版社,2006:92.
[24]
张永成, 田丰. 马铃薯试验研究方法[M]. 北京: 中国农业科学技术出版社, 2007.
[25]
门福义, 刘梦芸. 马铃薯栽培生理[M]. 北京: 中国农业出版社,1995:318.
[26]
李志霞, 聂继云, 闫震, 等. 响应面法对3,5-二硝基水杨酸比色法测定水果中还原糖含量条件的优化[J]. 分析测试学报, 2016, 35(10):1283-1288.
[27]
国家粮食储备局无锡科学研究设计院, 东海粮油工业(张家港)有限公司. GB 5009.5—2016,食品安全国家标准食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016.
[28]
中国疾病预防控制中心营养与食品安全所, 江苏省疾病预防控制中心. GB 5009.33—2016,食品安全国家标准食品中亚硝酸盐与硝酸盐的测定[S]. 北京: 中国标准出版社, 2016.
[29]
LAUER D A. Response of Nooksack potatoes to nitrogen fertilizer[J]. American potato journal, 1986,63:251-262.
[30]
PORTER G A, SISSON J A. Response of ‘Russet Burbank’ and ‘Shepody’ potatoes to nitrogen fertilizer in two cropping systems[J]. American potato journal, 1991,68:425-443.
[31]
ROBERTS S, WEAVER W H, PHELPS J P. Effect of rate and time of fertilization on nitrogen and yield of ‘Russet Burbank’ potatoes under center pivot irrigation[J]. American potato journal, 1982,59:77-86.
[32]
KLEINKOPF G E, WESTERMANN D T, DWELLE R B. Dry matter production and nitrogen utilization by six potato cultivars[J]. Agronomy journal, 1981, 73(5):799-802.
[33]
韦剑锋, 韦巧云, 梁振华, 等. 施氮量对冬马铃薯生长发育、产量及品质的影响[J]. 河南农业科学, 2015, 44(12):61-64.
[34]
李成晨, 索海翠, 罗焕明, 等. 化肥减施和施肥方式对马铃薯产量和块茎氮素积累的影响[J]. 中国农业科技导报, 2021, 23(9):173-183.
[35]
何昌福. 连续施氮对旱地覆膜马铃薯干物质积累与分配以及对根系生长的影响[D]. 兰州: 甘肃农业大学, 2016.
[36]
门中华, 李生秀. 硝态氮浓度对冬小麦幼苗根系活力及根际pH值的影响[J]. 安徽农业科学, 2009, 37(1):92-93.
[37]
YANG Y, CHEN X, LIU L, et al. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: A global metaanalysis[J]. Global change biology, 2022, 28(21):6446-6461.
[38]
IERNA A, PANDINO G, LOMBARDO S, et al. Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization[J]. Agricultural water management, 2011, 101(1):35-41.
[39]
李玥, 李应洪, 赵建红, 等. 缓控释氮肥对机插稻氮素利用特征及产量的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6):673-684.
[40]
SUN Y, MI W, SU L, et al. Controlled-release fertilizer enhances rice grain yield and N recovery efficiency in continuous non-flooding plastic film mulching cultivation system[J]. Field crops research, 2019,231:122-129.
[41]
蔡明, 刘吉利, 杨亚亚, 等. 马铃薯燕麦间作和施氮对马铃薯干物质累积、产量及品质的影响[J]. 西北农业学报, 2020, 29(3):354-362.
[42]
李东方, 李紫燕, 李世清, 等. 施氮对不同品种冬小麦植株硝态氮和硝酸还原酶活性的影响[J]. 西北植物学报, 2006(1):104-109.
[43]
蔡林志, 贡丹敏, 丁仁, 等. 施氮水平对不同马铃薯品种生长与产量的影响[J]. 中国瓜菜, 2023, 36(2):84-90.
[44]
何彩莲, 郑顺林, 王沛裴, 等. 施氮量对马铃薯氮素积累及功能叶片生理特性的影响[J]. 浙江农业学报, 2016, 28(9):1454-1461.
[45]
高如霞, 郑晓帆, 王金莲, 等. 马铃薯苗期氮代谢关键酶及其基因表达对聚氨酯包膜尿素的响应[J]. 干旱区资源与环境, 2021, 35(8):144-150.
[46]
THOMSEN H C, ERIKSSON D, MOLLER I S, et al. Cytosolic glutamine synthetase: A target for improvement of crop nitrogen use efficiency?[J]. Trends in plant science, 2014, 19(10):656-663.
[47]
张云, 赵艳菲, 王雅平, 等. 延薯4号马铃薯对氮素的生理生化响应及转录组分析[J]. 广东农业科学, 2021, 48(2):56-66.
[48]
王瑞, 李向岭, 郭栋, 等. 增施氮肥对夏玉米花后高温胁迫下籽粒碳氮代谢的影响[J]. 作物学报, 2023, 49(12):3342-3351.
[49]
范香全. 施氮与密度对膜下滴灌马铃薯氮素利用及产量质量的影响[D]. 呼和浩特: 内蒙古农业大学, 2014.
[50]
张绪成, 于显枫, 王红丽, 等. 半干旱区减氮增钾、有机肥替代对全膜覆盖垄沟种植马铃薯水肥利用和生物量积累的调控[J]. 中国农业科学, 2016, 49(5):852-864.
[51]
田丰, 张永成, 张凤军, 等. 不同肥料和密度对马铃薯光合特性和产量的影响[J]. 西北农业学报, 2010, 19(6):95-98.
[52]
JACOBS B C, CLARKE J. Accumulation and partitioning of dry matter and nitrogen in traditional and improved cultivars of taro (Colocasia esculenta (L.) Schott) under varying nitrogen supply[J]. Field crops research, 1993, 31(3-4):317-328.
[53]
ZEBARTH B J, ARSENAULT W J, SANDERSON J B. Effect of seedpiece spacing and nitrogen fertilization on tuber yield, yield components, and nitrogen use efficiency parameters of two potato cultivars[J]. American journal of potato research, 2006,83:289-296.
[54]
SINCIK M, TURAN Z M, GOKSOY A T. Responses of potato (Solanum tuberosum L.) to green manure cover crop and nitrogen fertilization rates[J]. American journal potato research, 2008,85:150-158.
PDF(1633 KB)

Accesses

Citation

Detail

Sections
Recommended

/