Effects of Microbial Agents on Apple Seedlings Growth and Rhizosphere Soil Microorganism

WANGWenli, YINXiaoning, JINHaibo, MALei, NIUJunqiang, MAMing

Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 142-152.

PDF(2950 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2950 KB)
Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 142-152. DOI: 10.11924/j.issn.1000-6850.casb2025-0272

Effects of Microbial Agents on Apple Seedlings Growth and Rhizosphere Soil Microorganism

Author information +
History +

Abstract

This study is intended to clarify the role and mechanism of microbial agents in alleviating continuous cropping obstacles in apple orchards. A combination of pot experiments, high-throughput sequencing, and bioinformatics analysis was conducted to investigate the effects of soil remediation microbial agents and Trichoderma harzianum agent on apple seedling growth and the rhizosphere soil microbial community. The results showed that in continuous cropping apple orchard soil, inoculation with the soil remediation microbial agents significantly enhanced the SPAD value of apple seedling leaves, and rose by 12.15% when it compared with CK1. The inoculation of both soil remediation microbial agent and Trichoderma harzianum agent were more favorable to apple seedling growth than CK1. The application of soil remediation microbial agent and Trichoderma harzianum increased the apple seedling index by 146.51% and 25.58%, respectively. Meanwhile, total root length, total root surface area, average root diameter, total root volume, and root tip number were raised by 123.20% and 35.50%, 146.34% and 42.25%, 9.55% and 5.10%, 178.95% and 48.37%, 136.06% and 22.12%, correspondingly. Apple orchards which inoculated with the soil remediation microbial agents and Trichoderma harzianum agent significantly enhanced the phylogenetic diversity of bacterial communities in the rhizosphere soil while reducing the diversity and evenness of fungal communities. Inoculation with these two agents, the relative abundance of Trichoderma species was significantly higher than three control treatments, whereas the relative abundance of Fusarium species were decreased. Trichoderma and Fusarium species were key factors to the differences in the fungal community structure of rhizosphere soil. The relative abundance of Pyrinomonas was significantly lower in the two inoculated treatments compared to CK1. The soil remediation microbial agent treatment significantly decreased the relative abundance of Luteitalea while increasing the relative abundance of Luteitalea pseudomonas, whereas the Trichoderma harzianum agent treatment significantly increased the relative abundance of Lysobacte. Pyrinomonas, Luteitalea, Pseudomonas and Lysobacte were identified as important species driving differences in the bacterial community structure of rhizosphere soil. In conclusion, the application of the soil remediation microbial agent and Trichoderma harzianum agent in continuous cropping apple orchard soil substantially enhanced the microbial structure and function of the rhizosphere soil, benefited apple seedling growth.

Key words

microbial agents / apple seedlings / continuous cropping / continuous cropping obstacles / rhizosphere soil microbial community / rhizosphere soil microbial diversity

Cite this article

Download Citations
WANG Wenli , YIN Xiaoning , JIN Haibo , et al . Effects of Microbial Agents on Apple Seedlings Growth and Rhizosphere Soil Microorganism[J]. Chinese Agricultural Science Bulletin. 2026, 42(1): 142-152 https://doi.org/10.11924/j.issn.1000-6850.casb2025-0272

References

[1]
孟照刚, 李孟哲, 胡成志, 等. 支撑苹果产业高质量发展创新的做法及建议[J]. 中国果树, 2025(7):112-116.
[2]
KLOSE S, ACOSTA-MARTÍNEZ V, AJWA H A. Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides[J]. Soil biology and biochemistry, 2006, 38(6):1243-1254.
[3]
HIDDINK G A, TERMORSHUIZEN A J, RAAIJMAKERS J M, et al. Effect of mixed and single crops on disease suppressiveness of soils[J]. Phytopathology, 2005, 95(11):1325-1332.
[4]
王海燕, 盛月凡, 李前进, 等. 葱、 芥菜和小麦轮作对老龄苹果园土壤环境的影响[J]. 园艺学报, 2019, 46(11):2224-2238.
[5]
王文丽, 李娟, 赵旭. 生物有机肥对连作当归根际土壤细菌群落结构和根腐病的影响[J]. 应用生态学报, 2019, 30(8):2813-2821.
[6]
王玫, 尹承苗, 孙萌萌, 等. 黄腐酸微生物菌剂对连作平邑甜茶光合特性的影响[J]. 植物生理学报, 2019, 55(1):99-106.
[7]
李逢梅. 复合微生物菌剂对云南昭通苹果产量及品质的影响[J]. 南方农业, 2024, 18(9):169-171.
[8]
刘洋洋, 束怀瑞, 陈伟. 混施微生物菌剂和有机肥对‘新红星’苹果解袋后果实品质的影响[J]. 中国土壤肥料, 2012(1):169-179.
[9]
赵蕾. 施肥中添加菌剂对土壤微生物及富士苹果生长、结果的影响[D]. 杨凌: 西北农林科技大学, 2023.
[10]
袁紫仪, 商美妮, 王琰, 等. 三株植物促生木霉的固体发酵工艺优化[J]. 微生物学通报, 2023, 50(1):235-250.
[11]
邵学辉, 张树武, 徐秉良. 长枝木霉代谢物对极细链格孢产毒抑制机制解析[J]. 果树学报, 2024, 41(1):133-142.
[12]
常媛, 杨兴堂, 姜传英, 等. 一株能拮抗3种土传病害病原真菌的长枝木霉[J]. 草业科学, 2017, 34(2):246-254.
[13]
李婷, 王洪旭, 崔广禄, 等. 哈茨木霉在植物应用上的研究进展[J]. 中国农学通报, 2023, 39(21):57-61.
[14]
王义坤, 苏厚文, 段亚楠, 等. 三种菌肥对连作平邑甜茶根系生长和土壤真菌群落多样性的促进效应[J]. 植物营养与肥料学报, 2020, 26(2):316-324.
[15]
石礼文. 贝莱斯芽孢杆菌SQR9和哈茨木霉NJAU4742对梨树促生效果研究[D]. 南京: 南京农业大学, 2022.
[16]
朱佳芯, 张庚, 商美妮, 等. 耐热木霉菌株筛选及其对热作区香蕉促生效应的研究[J]. 微生物学报, 2021, 61(1):206-218.
[17]
张钰. 哈茨木霉对基质袋培西瓜生长发育、品质及糖代谢的影响[D]. 沈阳: 沈阳农业大学, 2024.
[18]
沈菲. 不同品牌哈茨木霉及施用方式对青菜的促生作用[D]. 杭州: 浙江农林大学, 2023.
[19]
张祖衔, 邓薇, 李春, 等. 施加枯草芽孢杆菌和哈茨木霉对黄瓜幼苗生长的影响[J]. 北方园艺, 2021(23):11-20.
[20]
马群飞. 混合发酵长枝木霉和解淀粉芽孢杆菌防治植物病害的研究[D]. 济南: 山东大学, 2021.
[21]
游川, 张驰, 袁若钰, 等. 产酶溶杆菌生物有机肥对丹参根腐病的防控效果及微生态机制解析[J]. 土壤学报, 2025, 62(5):1511-1522.
[22]
YANG K L, ZHENG Y P, SUN K M, et al. Rhizosphere microbial markers (micro-markers): A new physical examination indicator for traditional Chinese medicines[J]. Chinese herbal medicines, 2024, 16(2):180-189.
[23]
潘纪源, 董庆龙, 温海彬, 等. 巨大芽孢杆菌菌剂对苹果产量、品质及土壤微生物的影响[J]. 园艺学报, 2023, 50(11):2453-2465.
[24]
CHANDRA A, CHANDRA P, TRIPATHI P. Whole genome sequence insight of two plant growth-promoting bacteria (B. subtilis BS87 and B. megaterium 89) isolated and characterized from sugarcane rhizosphere depicting better crop yield potentiality[J]. Microbiological research, 2021,247:126733.
[25]
AFZAL I, SHINWARI Z K, SIKANDAR S, et al. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants[J]. Microbiological research, 2019,221:36-49.
[26]
张大琪, 任立瑞, 杜洪志, 等. 微生物菌剂处理增加了生姜土壤中有益微生物的相对丰度[J]. 植物保护, 2023, 49(4):55-66.
[27]
王西亚, 吕继龙, 何萍, 等. 玉米秸秆分解过程中细菌群落组成演化特征[J]. 植物营养与肥料学报, 2021, 27(1):45-53.
[28]
TVEIT A T, URICH T, SVENNING M M. Metatranscriptomic analysis of arctic peat soilmicrobiota[J]. Applied and environmental microbiology, 2014, 80(18):5761-5772.
[29]
周永学, 陈静, 李远, 等. 棉秆还田对咸水滴灌棉田土壤酶活性和细菌群落结构多样性的影响[J]. 环境科学, 2022, 43(4):2192-2203.
[30]
高佩, 徐淑琴, 贺曦, 等. 野生中国沙棘根际假单胞属菌株的筛选鉴定及其对雍菜促生效果的影响[J]. 福建农业学报, 2024, 39(12):1402-1411.
[31]
姬广海. 溶杆菌属及其在植物病害防治中的研究进展[J]. 云南农业大学学报(自然科学版), 2011, 26(1):124-130.
PDF(2950 KB)

Accesses

Citation

Detail

Sections
Recommended

/