Research Progress on Degradation Technology and Resource Utilization of Agricultural High-Fiber Waste

FENGYichang, JIANGXin, KONGXinru, WANGRui, DONGShuibo, JILidong, YUEJianmin, LIYulong

Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 116-127.

PDF(2075 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2075 KB)
Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 116-127. DOI: 10.11924/j.issn.1000-6850.casb2025-0295

Research Progress on Degradation Technology and Resource Utilization of Agricultural High-Fiber Waste

Author information +
History +

Abstract

The large-scale generation of high-fiber agricultural waste poses significant environmental and resource challenges, necessitating breakthroughs in efficient resource utilization. This paper systematically reviews the sources and properties of agricultural high-fiber waste, as well as recent advances in its biological and abiotic degradation technologies, with a focus on analyzing the strengths and limitations of resource utilization strategies and exploring future directions within a multidisciplinary context. Through extensive retrieval and analysis of relevant domestic and international literature, the mechanisms of action, application outcomes, and existing bottlenecks of biological degradation (particularly microbial degradation) and abiotic degradation technologies are summarized, emphasizing both progress and shortcomings in current research. Analysis indicates that biological degradation is widely regarded as the most promising approach due to its environmental friendliness and economic potential. The integration of molecular biology and synthetic biology, such as gene editing and engineered strain construction, has significantly enhanced the efficiency of degradative enzymes and product conversion rates. However, challenges remain in the application of new technologies, including high pretreatment costs, inconsistent enzymatic efficiency, and potential safety risks associated with the large-scale use of engineered strains. Future research should focus on developing low-energy consumption pretreatment combined technologies, strengthening multi-disciplinary integration and innovation, and establishing a comprehensive biosafety evaluation system for genetically engineered strains, so as to promote the efficient, safe, and sustainable utilization of agricultural high-fiber waste.

Key words

agricultural high-fiber waste / biodegradation / lignocellulose / utilization / genetic engineering / lignocellulosic pretreatment

Cite this article

Download Citations
FENG Yichang , JIANG Xin , KONG Xinru , et al . Research Progress on Degradation Technology and Resource Utilization of Agricultural High-Fiber Waste[J]. Chinese Agricultural Science Bulletin. 2026, 42(1): 116-127 https://doi.org/10.11924/j.issn.1000-6850.casb2025-0295

References

[1]
LI S, CHEN G. Agricultural waste-derived superabsorbent hydrogels: Preparation, performance, and socioeconomic impacts[J]. Journal of cleaner production, 2020,251:119669.
[2]
PERIYASAMY S, KARTHIK V, SENTHIL KUMAR P, et al. Chemical, physical and biological methods to convert lignocellulosic waste into value-added products: A review[J]. Environmental chemistry letters, 2022, 20(2):1129-1152.
[3]
SUKSAI W, CHUENSANGJUN C, WONGSA J, et al. Use of waste mushroom beds for the production of value-added biodegradable fiber sheet[A].// E3S Web of conferences[C]. 2021:02016.
[4]
RASOOL G, IRFAN M. The role of microbial diversity in lignocellulosic biomass degradation: A biotechnological perspective[J]. ChemBioEng reviews, 2024, 11(3):613-635.
[5]
FU X G, ZUO H, WENG Y B, et al. Performance evaluation and microbial community succession analysis of co-composting treatment of refinery waste activated sludge[J]. Journal of environmental management, 2024,370:122872.
[6]
LONG B, ZHANG F, DAI S Y, et al. Engineering strategies to optimize lignocellulosic biorefineries[J]. Nature reviews bioengineering, 2024, 3(3):230-244.
[7]
LEADBEATER D R, OATES N C, BENNETT J P, et al. Mechanistic strategies of microbial communities regulating lignocellulose deconstruction in a UK salt marsh[J]. Microbiome, 2021, 9(1):48.
[8]
BHARDWAJ N, KUMAR B, AGRAWAL K, et al. Current perspective on production and applications of microbial cellulases: A review[J]. Bioresources and bioprocessing, 2021, 8(1):95.
[9]
LU J, LV Y, JIANG Y, et al. Consolidated bioprocessing of hemicellulose-enriched lignocellulose to succinic acid through a microbial cocultivation system[J]. ACS sustainable chemistry & engineering, 2020, 8(24):9035-9045.
[10]
TIAN S Q, ZHAO R Y, CHEN Z C. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials[J]. Renewable and sustainable energy reviews, 2018,91:483-489.
[11]
赵一全, 张慧, 张晓昱, 等. 木质素的微生物解聚与高值转化[J]. 微生物学报, 2020, 60(12):2717-2733.
[12]
RISEH R S, VAZVANI M G, HASSANISAADI M, et al. Agricultural wastes: A practical and potential source for the isolation and preparation of cellulose and application in agriculture and different industries[J]. Industrial crops and products, 2024,208:117904.
[13]
RAO J, LV Z, CHEN G, et al. Hemicellulose: Structure, chemical modification, and application[J]. Progress in polymer science, 2023,140:101675.
[14]
CARPITA N C, MCCANN M C. Redesigning plant cell walls for the biomass-based bioeconomy[J]. Journal of biological chemistry, 2020, 295(44):15144-15157.
[15]
周博鑫, 沈姿伶, 江京辉, 等. 木质素分离及主要物理和力学性能的研究进展[J]. 材料工程, 2024, 52(2):122-134.
[16]
LIU B, TANG L, CHEN Q, et al. Lignin distribution on cell wall micro-morphological regions of fibre in developmental phyllostachys pubescens culms[J]. Polymers, 2022, 14(2):312.
[17]
WU M, JIANG Y, LIU Y, et al. Microbial application of thermophilic Thermoanaerobacterium species in lignocellulosic biorefinery[J]. Applied microbiology and biotechnology, 2021, 105(14):5739-5749.
[18]
LIAO Y H, KOELEWIJN S-F, BOSSCHE G V D, et al. A sustainable wood biorefinery for low-carbon footprint chemicals production[J]. Science, 2020,367:1385-1390.
[19]
RONGPIPI S, YE D, GOMEZ E D, et al. Progress and opportunities in the characterization of cellulose-An important regulator of cell wall growth and mechanics[J]. Frontiers in plant science, 2019,9:1894.
[20]
翟旭航, 李霞, 元英进. 木质纤维素预处理及高值化技术研究进展[J]. 生物技术通报, 2021, 37(3):162-174.
[21]
HUANG K X, SU K Y, MOHAN M, et al. Research progress on organic acid pretreatment of lignocellulose[J]. International journal of biological macromolecules, 2025, 307(Pt 4):142325.
[22]
SELVAKUMAR P, ADANE A A, SENTHIL K P, et al. Influencing factors and environmental feasibility analysis of agricultural waste preprocessing routes towards biofuel production- A review[J]. Biomass and bioenergy, 2024,180:107001.
[23]
LIU B J, LIU L, DENG B J, et al. Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: A review[J]. International journal of biological macromolecules, 2022,222:1400-1413.
[24]
ZHOU Z Y, OUYANG D H, LIU D H, et al. Oxidative pretreatment of lignocellulosic biomass for enzymatic hydrolysis: Progress and challenges[J]. Bioresource technology, 2023,367:128208.
[25]
TRONCOSO O P, CORMAN-HIJAR J I, TORRES F G. Lignocellulosic biomass for the fabrication of triboelectric nano-generators (TENGs)- A review[J]. International journal of molecular sciences, 2023, 24(21):15784.
[26]
BALÁŽ P, DUTKOVÁ E. Fine milling in applied mechanochemistry[J]. Minerals engineering, 2009, 22(7):681-694.
[27]
JIER M, BAI Z C, DAI J F, et al. Fabrication of flame-retardant wood plastic composites based on wasted bean dregs with recycled PE via mechanochemical crosslinking[J]. Polymer composites, 2023, 44(9):6097-6107.
[28]
LOMOVSKY O, BYCHKOV A, LOMOVSKY I, et al. Mechanochemical production of lignin-containing powder fuels from biotechnical industry waste: A review[J]. Thermal science, 2015, 19(1):219-229.
[29]
葛磊. 机械化学在农业肥料及环境治理方面的应用研究[J]. 现代园艺, 2019(1):86-87.
[30]
朱建伟, 龚德鸿, 茅佳华, 等. 木质纤维生物质预处理技术研究进展[J]. 新能源进展, 2022, 10(4):383-392.
[31]
BAI M T, YANG Y, ZHANG L, et al. Preparation of energy-efficient, environmentally friendly and high-strength biocomposites from wood fibre ultramicro self-composite cellulose matrices[J]. Composites part B: Engineering, 2025,291:112047.
[32]
TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies[J]. Energy, 2011, 36(5):2328-2342.
[33]
KUMARI D, SINGH R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review[J]. Renewable and sustainable energy reviews, 2018,90:877-891.
[34]
ZHOU S J, WANG Q, HUA M D, et al. Sustainable biomass acts as an electron donor for Cr (VI) reduction during the subcritical hydrothermal process: Molecular insights into the role of hydrochar and liquid compounds[J]. Environmental science & technology, 2024, 58(35):15855-15863.
[35]
章仁勐. 纤维素亚临界水解制取单糖研究[D]. 杭州: 浙江工业大学, 2012.
[36]
SAHU A, MANNA M C, BHATTACHARJYA S, et al. Thermophilic ligno-cellulolytic fungi: The future of efficient and rapid bio-waste management[J]. Journal of environmental management, 2019,244:144-153.
[37]
TANYA K, KRITIKA T, DHARINI S, et al. The eco-friendly approach of cocktail enzyme in agricultural waste treatment: A comprehensive review[J]. International journal of biological macromolecules, 2022,209:1956-1974.
[38]
SUBHASH S, SANJAY S R, RAGHAVENDRA S, et al. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review[J]. Bioresource technology, 2022,360:127566.
[39]
SINGH D, SINGH D, MISHRA V, et al. Strategies for biological treatment of waste water: A critical review[J]. Journal of cleaner production, 2024,454:142266.
[40]
NAGENDRAN S, HALLEN-ADAMS H E, PAPER J M, et al. Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei[J]. Fungal genetics and biology, 2009, 46(5):427-435.
[41]
田朝光, 马延和. 真菌降解木质纤维素的功能基因组学研究进展[J]. 生物工程学报, 2010, 26(10):1333-1339.
[42]
李强, 吴晓青, 张新建. 微生物降解秸秆木质素的研究进展[J]. 微生物学报, 2023, 63(11):4118-4132.
[43]
HERMOSILLA E, RUBILAR O, SCHALCHLI H, et al. Sequential white-rot and brown-rot fungal pretreatment of wheat straw as a promising alternative for complementary mild treatments[J]. Waste management, 2018,79:240-250.
[44]
GHADA A, CHRISTOPHER P, JOSEPH B, et al. Lignin degradation by microorganisms: A review[J]. Biotechnology progress, 2022, 38(2):e3226.
[45]
CHAUHAN P S. Role of various bacterial enzymes in complete depolymerization of lignin: A review[J]. Biocatalysis and agricultural biotechnology, 2020,23:101498.
[46]
YANG J, ZHAO J, JIANG J C, et al. Isolation and characterization of Bacillus sp. capable of degradating alkali lignin[J]. Frontiers in energy research, 2021,9:807286.
[47]
GRGAS D, RUKAVINA M, BEŠLO D, et al. The bacterial degradation of lignin- A review[J]. Water, 2023, 15(7):1272.
[48]
鲍文英, 江经纬, 周云, 等. 一株木质纤维素降解菌的筛选及其全基因组分析[J]. 微生物学报, 2016, 56(5):765-777.
[49]
BENTO G S, XIMENES E F F. Fungal co-cultures in the lignocellulosic biorefinery context: A review[J]. International biodeterioration & biodegradation, 2019, 5(14):109-123.
[50]
ZHANG X, QINGGEER B, GAO J L, et al. Community succession and functional prediction of microbial consortium with straw degradation during subculture at low temperature[J]. Scientific reports, 2022, 12(1):20163.
[51]
GRZEGORZ J, ANNA P, JUSTYNA S, et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution[J]. FEMS microbiology reviews, 2017, 41(6):941-962.
[52]
ANDREZA D M L, XIMENES E F F, RIOS D M S L. An update on enzymatic cocktails for lignocellulose breakdown[J]. Journal of applied microbiology, 2018, 125(3):632-645.
[53]
VIEIRA M A, OLIVEIRA G S C D, ROCHA G H A, et al. The enzyme interactome concept in filamentous fungi linked to biomass valorization[J]. Bioresource technology, 2022,344:126200.
[54]
许从峰, 艾士奇, 申贵男, 等. 木质纤维素的微生物降解[J]. 生物工程学报, 2019, 35(11):2081-2091.
[55]
LIU L R, HUANG W C, LIU Y, et al. Diversity of cellulolytic microorganisms and microbial cellulases[J]. International biodeterioration & biodegradation, 2021,163:105277.
[56]
ZHANG L, LAURENT C V F P, LORENZ S, et al. Interdomain linker of the bioelecrocatalyst cellobiose dehydrogenase governs the electron transfer[J]. ACS catalysis, 2023, 13(12):8195-8205.
[57]
GI-YOUNG K, OKHEE C, EUNHYE G, et al. Quorum sensing-independent cellulase-sensitive pellicle formation is critical for colonization of Burkholderia glumae in rice plants[J]. Frontiers in microbiology, 2020,10:3090.
[58]
杨腾腾, 周宏, 王霞, 等. 微生物降解纤维素的新机制[J]. 微生物学通报, 2015, 42(5):928-935.
[59]
WU D, WEI Z M, AHMED M T, et al. Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives[J]. Chemosphere, 2022,286:131635.
[60]
AYSEGUL O, FULYA A S, OSMAN B A et al. Use of feruloyl esterase as laccase-mediator system in paper bleaching[J]. Applied biochemistry and biotechnology, 2020, 190(2):721-731.
[61]
SALDARRIAGA-HERNÁNDEZ S, VELASCO-AYALA C, FLORES P L I, et al. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes[J]. International journal of biological macromolecules, 2020,161:1099-1116.
[62]
ZHAO L, ZHANG J Y, ZHAO D Y, et al. Biological degradation of lignin: A critical review on progress and perspectives[J]. Industrial crops and products, 2022,188:115715.
[63]
XU Z X, LEI P, ZHAI R, et al. Recent advances in lignin valorization with bacterial cultures: Microorganisms, metabolic pathways, and bio-products[J]. Biotechnology for biofuels, 2019, 12(1):32.
[64]
张芳芳, 张桐, 戴丹, 等. 高效木质素降解菌的筛选及其对玉米秸秆的降解效果[J]. 菌物学报, 2021, 40(7):1869-1880.
[65]
LU M Z, LI Z H, ZHUANG H, et al. Dual enhancement of thermostability and activity of xylanase through computer-aided rational design[J]. ACS sustainable chemistry & engineering, 2024, 12(41):15114-15124.
[66]
HAN C, LI W G, HUA C Y, et al. Enhancement of catalytic activity and thermostability of a thermostable cellobiohydrolase from Chaetomium thermophilum by site-directed mutagenesis[J]. International journal of biological macromolecules, 2018,116:691-697.
[67]
ALBAYATI S H, NEZHAD N G, Taki A G, et al. Efficient and easible biocatalysts: Strategies for enzyme improvement. a review[J]. International journal of biological macromolecules, 2024,276:133978.
[68]
PRITAM G, PAGAR A D, PATIL M D, et al. Chemical modification of enzymes to improve biocatalytic performance[J]. Biotechnology advances, 2021,53:107868.
[69]
MARÍA D M, ÁNGEL G M, NALIN S, et al. Deep eutectic solvents for improved biomass pretreatment: current status and future prospective towards sustainable processes[J]. Bioresource technology, 2023,369:128396.
[70]
YOO C G, MENG X Z, PU Y Q, et al. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review[J]. Bioresource technology, 2020,301:122784.
[71]
季蕾. 新型木质纤维素复合酶系协同降解效果及机理研究[D]. 北京: 中国农业大学, 2015.
[72]
XIA Y W, WANG J F, GUO C X, et al. Exploring the multilevel regulation of lignocellulases in the filamentous fungus Trichoderma guizhouense NJAU4742 from an omics perspective[J]. Microbial cell factories, 2022, 21(1):144.
[73]
钟路遥, 佘炜怡, 周娇娇, 等. 沉默里氏木霉组蛋白赖氨酸甲基转移酶基因对纤维素酶表达的影响[J]. 微生物学通报, 2021, 48(5):1421-1433.
[74]
刘文书, 王赞丞, 高玉杉, 等. 过表达Trxyr1基因对里氏木霉合成纤维素酶的影响[J]. 中国酿造, 2023, 42(8):58-64.
[75]
PENA JR C E, COSTA M G S, BATISTA P R. Glycosylation effects on the structure and dynamics of a full-length Cel7A cellulase[J]. Biochimica et biophysica acta, 2020, 1868(1):140248.
[76]
张慧杰, 廖思敏, 凌小翠, 等. 毕赤酵母截短PGK1启动子与不同终止子组合调控外源基因表达[J]. 微生物学报, 2022, 62(7):2642-2657.
[77]
CHEN Z W, JEROME L, ZHU Y W. IStable: Off-the-shelf predictor integration for predicting protein stability changes[J]. BMC bioinformatics, 2013, 14(S2):S5.
[78]
MAWARDA P C, LE ROUX X, DIRK VAN ELSAS J, et al. Deliberate introduction of invisible invaders: A critical appraisal of the impact of microbial inoculants on soil microbial communities[J]. Soil biology and biochemistry, 2020,148:107874.
[79]
BASAK B, KUMAR R, TANPURE R S, et al. Roles of engineered lignocellulolytic microbiota in bioaugmenting lignocellulose biomethanation[J]. Renewable and sustainable energy reviews, 2025,207:114913.
[80]
GADDE B, BONNET S, MENKE C, et al. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines[J]. Environmental pollution, 2009, 157(5):1554-1558.
[81]
BAIDOO E A, MANKA’ABUSI D, APURI L, et al. Biochar addition influences C and N dynamics during biochar co-composting and the nutrient content of the biochar co-compost[J]. Scientific reports, 2024, 14(1):23781.
[82]
XUE Z, ZHOU G, YU X, et al. Ultra high temperature aerobic composting processin treating municipal sludge[J]. China environmental science, 2017, 37(9):3399-3406.
[83]
CHEN X J, ZOU Y J, LI Q Y, et al. Effect of thermophilic microbial agents on crude fiber content, carbohydrate-active enzyme genes, and microbial communities during Chinese medicine residue composting[J]. ACS omega, 2023, 8(42):39570-39582.
[84]
WANG B, WANG Y, WEI Y Q, et al. Impact of inoculation and turning for full-scale composting on core bacterial community and their co-occurrence compared by network analysis[J]. Bioresource technology, 2022,345:126417.
[85]
DO T T, PHUONG D T H, VAN T L, et al. Effects of the psychrotrophic bacteria and thermophilic actinomycetes consortium inoculation on human faeces composting process under moderate cold climate conditions in Northern Vietnam[J]. Biology bulletin, 2022, 49(Suppl 1):S51-S59.
[86]
李昌宁, 苏明, 姚拓, 等. 微生物菌剂对猪粪堆肥过程中堆肥理化性质和优势细菌群落的影响[J]. 植物营养与肥料学报, 2020, 26(9):1600-1611.
[87]
LIU N Y, LIU Z Z, WANG K Y, et al. Comparison analysis of microbial agent and different compost material on microbial community and nitrogen transformation genes dynamic changes during pig manure compost[J]. Bioresource technology, 2024,395:130359.
[88]
LU J W, WANG J G, GAO Q, et al. Effect of microbial inoculation on carbon preservation during goat manure aerobic composting[J]. Molecules, 2021, 26(15):4441.
[89]
MA L, WANG L, ZHANG Z, et al. Research progress of biological feed in beef cattle[J]. Animals, 2023, 13(16):2662.
[90]
QI X W, LI Z H, MAZARIN A, et al. Fermented crop straws by Trichoderma viride and Saccharomyces cerevisiae enhanced the bioconversion rate of Musca domestica (Diptera: Muscidae)[J]. Environmental science and pollution research international, 2019, 26(28):29388-29396.
[91]
SAHA B C, KENNEDY G J, QURESHI N, et al. Biological pretreatment of corn stover with Phlebia brevispora NRRL-13108 for enhanced enzymatic hydrolysis and efficient ethanol production[J]. Biotechnology progress, 2017, 33(2):365-374.
[92]
WANG J B, ZHU J H, WANG X, et al. Enhanced production of ethyl caproate in strong-flavor Baijiu through a dual bacterial co-culture system and immobilization on natural luffa sponge[J]. Food research international, 2025,208:116263.
[93]
LI C, YANG X, CHEN C X, et al. Application of ZIF-67-grafted CuMoS in microbial fuel cells: efficient oxygen reduction catalysis regulated by the d-band center[J]. Journal of environmental chemical engineering, 2025, 13(6):119458.
[94]
GILL M K, KOCHER G S, PANESAR A S, et al. Deep eutectic solvent-mediated delignification of corn stover for improved fermentable sugar yield and bioethanol production[J]. Fuel, 2025,397:135457.
[95]
CHOU K J, CROFT T, HEBDON S D, et al. Engineering the cellulolytic bacterium, Clostridium thermocellum, to co-utilize hemicellulose[J]. Metabolic engineering, 2024,83:193-205.
[96]
CHENG K K, WU J, LIN Z N, et al. Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob[J]. Biotechnology for biofuels, 2014, 7(1):166.
[97]
NIKITA K, KAVYA I K, SHRASHTI S, et al. Perspectives on the microorganism of extreme environments and their applications[J]. Current research in microbial sciences, 2022,3:100134.
[98]
ASLI I, MARTIN K. Recovery and recycling of deep eutectic solvents in biomass conversions: A review[J]. Biomass conversion and biorefinery, 2022, 12(1):197-226.
[99]
LIU Y, SUN L, HUO Y X, et al. Strategies for improving the production of bio-based vanillin[J]. Microbial cell factories, 2023, 22(1):147.
[100]
LI Z L, ALYA F, PETER T, et al. An account of models of molecular circuits for associative learning with reinforcement effect and forced dissociation[J]. Sensors, 2022, 22(15):5907.
[101]
FU R T, WANG J, CHEN C, et al. Transcriptomic and metabolomic analyses provide insights into the pathogenic mechanism of the rice false smut pathogen Ustilaginoidea virens[J]. International journal of molecular sciences, 2023, 24(13):10805.
[102]
LI X D, LI Z F, LI M, et al. Transcriptomic and metabolomic analysis reveals the influence of carbohydrates on lignin degradation mediated by Bacillus amyloliquefaciens[J]. Frontiers in microbiology, 2024,15:1224855.
[103]
SHAILJA P, RITIKA, PIYALI N, et al. Employment of the CRISPR/Cas9 system to improve cellulase production in Trichoderma reesei[J]. Biotechnology advances, 2022,60:108022.
[104]
刘睿. 里氏木霉CRISPR-Cas9系统构建及其产酶机制研究[D]. 北京: 中国科学院大学, 2017.
[105]
SHA G M, WU Z W, CHEN T, et al. Mechanisms for more efficient antibiotics and antibiotic resistance genes removal during industrialized treatment of over 200 tons of tylosin and spectinomycin mycelial dregs by integrated meta-omics[J]. Bioresource technology, 2024,401:130715.
[106]
YUAN A, SHA R, XIE W, et al. RNA-activated CRISPR/Cas12a nanorobots operating in living cells[J]. Journal of the American chemical society, 2024, 146(39):26657-26666.
[107]
KARTHIK M, SEETHARAM A S, SEVERIN A J, et al. CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects[J]. Journal of biological chemistry, 2020, 295(17):5538-5553.
[108]
LU Q H, YU L, LIANG Z W, et al. Dehalococcoides as a potential biomarker evidence for uncharacterized organohalides in environmental samples[J]. Frontiers in microbiology, 2017,8:1677.
[109]
MENG Z Y, MA D L, HE N, et al. Expanding the frontiers of microbial biosynthesis with synthetic microbial communities[J]. Current opinion in biotechnology, 2025,96:103351.
[110]
CUI L, WANG F, LI H, et al. AnnATAC: Automatic cell type annotation for scATAC-seq data based on language model[J]. BMC biology, 2025, 23(1):145.
[111]
FENG Z, WANG Y C, XU H H, et al. Recent advances in bacterial therapeutics based on sense and response[J]. Acta pharmaceutica sinica B, 2023, 13(3):1014-1027.
[112]
JIANG B, SONG K, REN J, et al. Comparison of metagenomic samples using sequence signatures[J]. BMC genomics, 2012, 13(1):730.
PDF(2075 KB)

Accesses

Citation

Detail

Sections
Recommended

/