PDF(2075 KB)
Research Progress on Degradation Technology and Resource Utilization of Agricultural High-Fiber Waste
FENGYichang, JIANGXin, KONGXinru, WANGRui, DONGShuibo, JILidong, YUEJianmin, LIYulong
Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 116-127.
PDF(2075 KB)
Abbreviation (ISO4): Chin Agric Sci Bull
Editor in chief: Yulong YIN
PDF(2075 KB)
Research Progress on Degradation Technology and Resource Utilization of Agricultural High-Fiber Waste
The large-scale generation of high-fiber agricultural waste poses significant environmental and resource challenges, necessitating breakthroughs in efficient resource utilization. This paper systematically reviews the sources and properties of agricultural high-fiber waste, as well as recent advances in its biological and abiotic degradation technologies, with a focus on analyzing the strengths and limitations of resource utilization strategies and exploring future directions within a multidisciplinary context. Through extensive retrieval and analysis of relevant domestic and international literature, the mechanisms of action, application outcomes, and existing bottlenecks of biological degradation (particularly microbial degradation) and abiotic degradation technologies are summarized, emphasizing both progress and shortcomings in current research. Analysis indicates that biological degradation is widely regarded as the most promising approach due to its environmental friendliness and economic potential. The integration of molecular biology and synthetic biology, such as gene editing and engineered strain construction, has significantly enhanced the efficiency of degradative enzymes and product conversion rates. However, challenges remain in the application of new technologies, including high pretreatment costs, inconsistent enzymatic efficiency, and potential safety risks associated with the large-scale use of engineered strains. Future research should focus on developing low-energy consumption pretreatment combined technologies, strengthening multi-disciplinary integration and innovation, and establishing a comprehensive biosafety evaluation system for genetically engineered strains, so as to promote the efficient, safe, and sustainable utilization of agricultural high-fiber waste.
agricultural high-fiber waste / biodegradation / lignocellulose / utilization / genetic engineering / lignocellulosic pretreatment
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
赵一全, 张慧, 张晓昱, 等. 木质素的微生物解聚与高值转化[J]. 微生物学报, 2020, 60(12):2717-2733.
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
周博鑫, 沈姿伶, 江京辉, 等. 木质素分离及主要物理和力学性能的研究进展[J]. 材料工程, 2024, 52(2):122-134.
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
翟旭航, 李霞, 元英进. 木质纤维素预处理及高值化技术研究进展[J]. 生物技术通报, 2021, 37(3):162-174.
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
葛磊. 机械化学在农业肥料及环境治理方面的应用研究[J]. 现代园艺, 2019(1):86-87.
|
| [30] |
朱建伟, 龚德鸿, 茅佳华, 等. 木质纤维生物质预处理技术研究进展[J]. 新能源进展, 2022, 10(4):383-392.
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
章仁勐. 纤维素亚临界水解制取单糖研究[D]. 杭州: 浙江工业大学, 2012.
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
田朝光, 马延和. 真菌降解木质纤维素的功能基因组学研究进展[J]. 生物工程学报, 2010, 26(10):1333-1339.
|
| [42] |
李强, 吴晓青, 张新建. 微生物降解秸秆木质素的研究进展[J]. 微生物学报, 2023, 63(11):4118-4132.
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
鲍文英, 江经纬, 周云, 等. 一株木质纤维素降解菌的筛选及其全基因组分析[J]. 微生物学报, 2016, 56(5):765-777.
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
许从峰, 艾士奇, 申贵男, 等. 木质纤维素的微生物降解[J]. 生物工程学报, 2019, 35(11):2081-2091.
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
杨腾腾, 周宏, 王霞, 等. 微生物降解纤维素的新机制[J]. 微生物学通报, 2015, 42(5):928-935.
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
张芳芳, 张桐, 戴丹, 等. 高效木质素降解菌的筛选及其对玉米秸秆的降解效果[J]. 菌物学报, 2021, 40(7):1869-1880.
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
季蕾. 新型木质纤维素复合酶系协同降解效果及机理研究[D]. 北京: 中国农业大学, 2015.
|
| [72] |
|
| [73] |
钟路遥, 佘炜怡, 周娇娇, 等. 沉默里氏木霉组蛋白赖氨酸甲基转移酶基因对纤维素酶表达的影响[J]. 微生物学通报, 2021, 48(5):1421-1433.
|
| [74] |
刘文书, 王赞丞, 高玉杉, 等. 过表达Trxyr1基因对里氏木霉合成纤维素酶的影响[J]. 中国酿造, 2023, 42(8):58-64.
|
| [75] |
|
| [76] |
张慧杰, 廖思敏, 凌小翠, 等. 毕赤酵母截短PGK1启动子与不同终止子组合调控外源基因表达[J]. 微生物学报, 2022, 62(7):2642-2657.
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
李昌宁, 苏明, 姚拓, 等. 微生物菌剂对猪粪堆肥过程中堆肥理化性质和优势细菌群落的影响[J]. 植物营养与肥料学报, 2020, 26(9):1600-1611.
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
刘睿. 里氏木霉CRISPR-Cas9系统构建及其产酶机制研究[D]. 北京: 中国科学院大学, 2017.
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
/
| 〈 |
|
〉 |