Progress on Omics Techniques of Seed Dormancy and Dormancy Release

XIAJiamiao, DENGXiaoxia, LINRuizhu, DUYatong, WANGJinghong, LINJixiang

Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 43-59.

PDF(1139 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1139 KB)
Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 43-59. DOI: 10.11924/j.issn.1000-6850.casb2025-0296

Progress on Omics Techniques of Seed Dormancy and Dormancy Release

Author information +
History +

Abstract

Seed dormancy represents a core biological trait in plants for environmental adaptation and is of critical importance for population propagation, germplasm resource conservation, and agricultural and forestry production. However, the regulatory mechanisms underlying dormancy induction and release are complex and diverse. Current research often focuses on conventional physiological and biochemical analyses, lacking systematic and comprehensive investigation, whereas omics technologies provide precise tools for deciphering these processes. To thoroughly review advances in the molecular mechanisms of seed dormancy and dormancy release, this article systematically summarizes the application and representative achievements of three prominent omics technologies in this field: transcriptomics, proteomics, and metabolomics. Transcriptomics enables precise identification of key dormancy-related genes (e.g., DOG1 and hormone signaling pathway genes) and non-coding RNAs, revealing spatiotemporal specificity in gene expression. Proteomics facilitates the identification of differentially abundant proteins during dormancy transitions, elucidating the synergistic roles of hormone interactions, reactive oxygen species (ROS) regulation, and energy metabolism. Metabolomics can pinpoint key metabolites involved in dormancy release (such as sucrose, proline, and lysophospholipids) and help construct a ‘gene-protein-metabolite’ association network. The review also notes existing limitations in current research, including insufficient integration of multi-omics data, limited species generality, and inadequate translation of research findings into practice. Accordingly, the review proposes that future studies should strengthen cross-omics data correlation analysis, expand research on wild and rare species, and accelerate the translation of basic research into breeding practices, thereby providing theoretical support and technical guidance for a comprehensive understanding of seed dormancy mechanisms and their application in agricultural production.

Key words

seed dormancy / dormancy release / transcriptomics / proteomics / metabolomics

Cite this article

Download Citations
XIA Jiamiao , DENG Xiaoxia , LIN Ruizhu , et al . Progress on Omics Techniques of Seed Dormancy and Dormancy Release[J]. Chinese Agricultural Science Bulletin. 2026, 42(1): 43-59 https://doi.org/10.11924/j.issn.1000-6850.casb2025-0296

References

[1]
李姝婧. 黑果腺肋花楸种子休眠及萌发特性研究[D]. 长春: 吉林农业大学, 2023.
[2]
王娜, 张中华, 宁蓉春, 等. 不同植物生长调节剂对四种莎草科植物种子萌发特性的影响[J]. 种子, 2023, 42(3):47-55.
[3]
海潮. 浅析林木种子处理技术在林业生产中的应用[J]. 南方农业, 2021, 15(30):140-141.
[4]
BEWLEY J D, BLACK M. Dormancy and the control of germination[M]. Seeds,1994:199-271.
[5]
DONOHUE K. Completing the cycle: Maternal effects as the missing link in plant life histories[J]. Philosophical transactions of the royal society B: Biological sciences, 2009,364:1059-1074.
[6]
GRAEBER K, NAKABAYASHI K, MIATTON E, et al. Molecular mechanisms of seed dormancy[J]. Plant, cell & environment, 2012, 35(10):1769-1786.
[7]
BASKIN C C, BASKIN J M. Seeds: Ecology, biogeography, and evolution of dormancy and germination[M]. Oxford: Academic Press, 2014.
[8]
刘玉洋. 大叶朴种子休眠与萌发的机理研究[D]. 泰安: 山东农业大学, 2017.
[9]
罗元明, 杨福全. 多组学前沿技术专刊序言[J]. 生物工程学报, 2022, 38(10):3571-3580.
[10]
胡海玲, 马钰雯, 耿赫阳, 等. 丛枝菌根真菌AMF提高植物抗逆性的组学技术研究进展[J]. 植物营养与肥料学报, 2022, 28(10):1928-1936.
[11]
FAIT A, ANGELOVICI R, LESS H, et al. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches[J]. Plant physiology, 2006, 142(3):839-854.
[12]
SREENIVASULU N, USADEL B, WINTER A, et al. Barley grain maturation and germination: Metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/ PageMan profiling tools[J]. Plant physiology, 2008, 146(4):1738-1758.
[13]
GUO B, CHEN Y, ZHANG G, et al. Comparative proteomic analysis of embryos between a maize hybrid and its parental lines during early stages of seed germination[J]. Plos one, 2013, 8(6):e65867.
[14]
YIFTER M W, MEHARI H G. Omics technologies towards sesame improvement: A review[J]. Molecular biology reports, 2023, 50(8):6885-6899.
[15]
FEUILLET C, LEACH J E, ROGERS J, et al. Crop genome sequencing: Lessons and rationales[J]. Trends in plant science, 2011, 16(2):77-88.
[16]
DUAN X, JIANG W, WU K, et al. Integrating transcriptomics and hormones dynamics reveal seed germination and emergence process in Polygonatum cyrtonema Hua[J]. International journal of molecular sciences, 2023, 24(4):3792.
[17]
高云鹏. 紫荆种子休眠解除过程中生理生化变化及分子机理研究[D]. 南京: 南京林业大学, 2020.
[18]
ZAYNAB M, PAN D, FATIMA M, et al. Transcriptomic approach to address low germination rate in Cyclobalnopsis gilva seeds[J]. South African journal of botany, 2018,119:286-294.
[19]
王菲菲, 张胜忠, 胡晓辉, 等. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9):2446-2461.
[20]
LI S, SHI T, KONG F, et al. Methods for breaking the dormancy of eastern redbud (Cercis canadensis) seeds[J]. Seed science and technology, 2013, 41(1):27-35.
[21]
BIAN F, SU J, LIU W, et al. Dormancy release and germination of Taxus yunnanensis seeds during wet sand storage[J]. Scientific reports, 2018, 8(1):3205.
[22]
吉浴芳. 毛叶山桐子种子休眠解除及其转录组学研究[D]. 吉首: 吉首大学, 2022.
[23]
LI A H, JIANG S Y, YANG G, et al. Molecular mechanism of seed dormancy release induced by fluridone compared with cod stratification in Notopterygium incisum[J]. BMC plant biology, 2018, 18(1):1-11.
[24]
WORARAD K, TOMOHIRO S, KAZUO I, et al. Transcriptome analysis of seed dormancy after rinsing and chilling in ornamental peaches (Prunus persica (L.) Batsch)[J]. BMC genomics, 2016, 17(1):575.
[25]
宋松泉, 唐翠芳, 姜孝成, 等. 种子休眠与萌发的关键调控因子DOG1的研究进展[J]. 植物科学学报, 2024, 42(2):254-265.
[26]
DEKKERS B J W, HE H Z, HANSON J, et al. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development[J]. The plant journal, 2016, 85(4):451-465.
[27]
CUPERUS J T, FAHLGREN N, CARRINGTON J C. Evolution and functional diversification of miRNA genes[J]. Plant cell, 2011,23:431-442.
[28]
张伟. 天山郁金香种子休眠解除机制研究[D]. 沈阳: 沈阳农业大学, 2020.
[29]
HUAN L, MUHAMMAD Q U T, LI Y, et al. Current progress, applications and challenges of multi-omics approaches in sesame genetic improvement[J]. International journal of molecular sciences, 2023, 24(4):3105.
[30]
SHAW R K, SHEN Y, WANG J, et al. Advances in multi-omics approaches for molecular breeding of black rot resistance in Brassica oleracea L.[J]. Frontiers in plant science, 2021,12:742553.
[31]
孙永莲, 高云鹏, 侯静, 等. 休眠解除前后紫荆种子差异蛋白质组分析[J]. 南京林业大学学报(自然科学版), 2025, 49(3):137-143.
[32]
STASZAK A M, PAWŁOWSKI T A. Proteomic analysis of embryogenesis and the acquisition of seed dormancy in Norway maple (Acer platanoides L.)[J]. International journal of molecular sciences, 2014, 15(6):10868-10891.
[33]
陈宏志. 檫木种子休眠与休眠解除机制研究[D]. 北京: 中国林业科学研究院, 2021.
[34]
兰海, 冷亦峰, 周树峰, 等. 强休眠玉米种子休眠前后的蛋白差异表达[J]. 植物遗传资源学报, 2015, 16(1):23-28.
[35]
GUO N, TANG S, WANG J, et al. Transcriptome and proteome analysis revealed that hormone and reactive oxygen species synergetically regulate dormancy of introgression line in rice (Oryza sativa L.)[J]. International journal of molecular sciences, 2023, 24(7):6088.
[36]
ZHENG R, XU X Y, LI C M, et al. Proteomic analysis of differentially expressed proteins in developmental soybean (Glycine max (L.) Merr.) seed[J]. Soybean science, 2008, 27(4):556-563.
[37]
孙杰. 野牛草种子休眠机理及破眠蛋白质组学研究[D]. 呼和浩特: 内蒙古农业大学, 2009.
[38]
PUNIA A, KUMARI M, CHOUHAN M, et al. Proteomic and metabolomic insights into seed germination of Ferula assa-foetida[J]. Journal of proteomics, 2024,300:105176.
[39]
李富恒, 张晓雯, 张永芳, 等. 不同发育阶段老山芹种子多组学联合分析[J]. 东北农业大学学报, 2021, 52(10):32-46.
[40]
WANG M, YANG H. cGA3-related differential proteomic analysis of Phalaris arundinacea seeds during dormancy and at its release[J]. Seed science and technology, 2021, 49(3):305-319.
[41]
WU Y, SHEN Y B. Sulfuric acid and gibberellic acid (GA3) treatment combined with exposure to cold temperature modulates seed proteins during breaking of dormancy to germination in Tilia miqueliana[J]. The protein journal, 2021, 40(6):940-954.
[42]
CAO P, ZHAO Y, WU F, et al. Multi-omics techniques for soybean molecular breeding[J]. International journal of molecular sciences, 2022, 23(9):4994.
[43]
TAYLOR J, KING R, LTMANN T A, et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning[J]. Bioinformatics,2002,18:S241-S248.
[44]
WANG L, ZHU Y, JIANG J, et al. Dynamic changes in the levels of metabolites and endogenous hormones during the germination of Zanthoxylum nitidum (Roxb.) DC. seeds[J]. Plant signaling & behavior, 2023, 18(1):2251750.
[45]
YAN F, WEI T, YANG C, et al. Combined analysis of untargeted metabolomics and transcriptomics revealed seed germination and seedling establishment in Zelkova schneideriana[J]. Genes, 2024, 15(4):488.
[46]
ZHENG G, LI W, ZHANG S, et al. Multiomics strategies for decoding seed dormancy breakdown in Paris polyphylla[J]. BMC plant biology, 2023, 23(1):247.
[47]
张文武, 童金凤, 彭甫蕾, 等. 基于非靶代谢组学的多花黄精沙藏种子萌发过程差异代谢物分析[J]. 生物资源, 2023, 45(2):164-176.
[48]
许郡元, 张梦醒, 张小雪, 等. 山桐子种子萌发过程中的激素和代谢组分析[J/OL]. 南京林业大学学报(自然科学版), 2024, https://link.cnki.net/urlid/32.1161.s.20240910.0927.002.
PDF(1139 KB)

Accesses

Citation

Detail

Sections
Recommended

/