Research Progress on Regulatory Mechanism of Flower Color Pigmentation in Orchid

WANGJin, WANBin, TUXunliang, JIANGYu, DENGJiahong

Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 84-91.

PDF(1462 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1462 KB)
Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 84-91. DOI: 10.11924/j.issn.1000-6850.casb2025-0347

Research Progress on Regulatory Mechanism of Flower Color Pigmentation in Orchid

Author information +
History +

Abstract

Flower color is the core of the ornamental and commercial value of orchids, and its formation is closely associated with the types, content, and deposition patterns of floral pigments. To systematically elucidate the regulatory mechanisms underlying pigment deposition in orchid flowers, this review summarizes the main pigment substances (flavonoids, carotenoids, and chlorophylls), with a particular focus on the molecular regulatory mechanisms of structural and regulatory genes in the anthocyanin and carotenoid biosynthesis pathways. Structural genes determine flower color types (e.g., red, purple, yellow) and color intensity through their expression patterns and levels, while regulatory genes control pigmentation patterns such as petal background color, spots, patches, and venation via spatiotemporally specific expression. Among these, the synergistic interaction between MYB and bHLH transcription factors plays a key role in the formation of pigmentation patterns. Additionally, this review analyzes how environmental factors such as light, temperature, and exogenous chemicals indirectly influence floral pigment metabolism by modulating the expression of key genes. Further efforts should aim to refine the molecular dynamic regulatory network of pigment synthesis in orchids and explore specific regulatory mechanisms underlying pigmentation patterns. This study aims to provide theoretical insights and practical support for future directed breeding and gene editing in orchids.

Key words

orchid / coloration pattern / floral color pattern / floral color pigmentation / anthocyanin / carotenoid / molecular mechanism / structural genes / regulatory genes

Cite this article

Download Citations
WANG Jin , WAN Bin , TU Xunliang , et al . Research Progress on Regulatory Mechanism of Flower Color Pigmentation in Orchid[J]. Chinese Agricultural Science Bulletin. 2026, 42(1): 84-91 https://doi.org/10.11924/j.issn.1000-6850.casb2025-0347

References

[1]
RAMYA M, JANG S, AN H R, et al. Volatile organic compounds from orchids: From synthesis and function to gene regulation[J]. International journal of molecular sciences, 2020, 21(3).
[2]
NARBONA E, ARISTA M, WHITTALL J B, et al. Editorial: The role of flower color in angiosperm evolution[J]. Frontiers in plant science, 2021,12.
[3]
DING B Q. The roles of R2R3-MYBs in regulating complex pigmentation patterns in flowers[J]. Horticultural plant journal, 2023, 9(6):1067-1078.
[4]
OSORIO D, PAPIOREK S, JUNKER R R, et al. Gloss, colour and grip: Multifunctional epidermal cell shapes in bee- and bird-pollinated flowers[J]. Plos one, 2014, 9(11):e112013.
[5]
HSIAO Y Y, PAN Z J, HSU C C, et al. Research on orchid biology and biotechnology[J]. Plant and cell physiology, 2011, 52(9):1467-1486.
[6]
ZHANG Y, ZHOU T, DAI Z, et al. Comparative transcriptomics provides insight into floral color polymorphism in a Pleione limprichtii orchid population[J]. International journal of molecular sciences, 2019, 21(1).
[7]
LIANG C Y, RENGASAMY K P, HUANG L M, et al. Assessment of violet-blue color formation in Phalaenopsis orchids[J]. BMC Plant biology, 2020, 20(1).
[8]
PEI Z, HUANG Y, NI J, et al. For a colorful life: recent advances in anthocyanin biosynthesis during leaf senescence[J]. Biology, 2024, 13(5):329.
[9]
WANG L, ALBERT N W, ZHANG H, et al. Temporal and spatial regulation of anthocyanin biosynthesis provide diverse flower colour intensities and patterning in Cymbidium orchid[J]. Planta, 2014, 240(5):983-1002.
[10]
YIN H, WANG Y, LI Y, et al. Characterization of the varied output from the anthocyanin pathway in Phalaenopsis-type Dendrobium hybrids and its relationship with flower coloration[J]. Scientia horticulturae, 2024,325:12.
[11]
SUN T, RAO S, ZHOU X, et al. Plant carotenoids: Recent advances and future perspectives[J]. Molecular horticulture, 2022, 2(1):3.
[12]
HERMANNS A S, ZHOU X, XU Q, et al. Carotenoid pigment accumulation in horticultural plants[J]. Horticultural plant journal, 2020, 6(6):343-360.
[13]
HE C, LIU X, SILVA J A, et al. Transcriptome sequencing and metabolite profiling analyses provide comprehensive insight into molecular mechanisms of flower development in Dendrobium officinale (Orchidaceae)[J]. Plant molecular biology, 2020, 104(4-5):529-548.
[14]
ZHENG B Q, LI X Q, WANG Y. New insights into the mechanism of spatiotemporal scent accumulation in orchid flowers[J]. Plants, 2023, 12(2):304.
[15]
LIU Y C, YEH C W, CHUNG J D, et al. Petal-specific RNAi-mediated silencing of the phytoene synthase gene reduces xanthophyll levels to generate new Oncidium orchid varieties with white-colour blooms[J]. Plant biotechnology journal, 2019, 17(11):2035-2037.
[16]
CHIOU C Y, YEH K W. Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of Oncidium Gower Ramsey[J]. Plant molecular biology, 2007, 66(4):379-388.
[17]
黄昕蕾, 王雁, 张辉. 3种石斛属植物类胡萝卜素成分及代谢途径分析[J]. 林业科学研究, 2019, 32(5):107-113.
[18]
BAI Y, MA J, MA Y, et al. Color components determination and full-length comparative transcriptomic analyses reveal the potential mechanism of carotenoid synthesis during Paphiopedilum armeniacum flowering[J]. Peer J, 2024,12.
[19]
LUO X, LONG Z, CHEN M, et al. Targeted metabolomics- and transcriptomics-based investigation of carotenoid pigmentation in Phalaenopsis-type Dendrobium hybrids[J]. Scientia horticulturae, 2025,339.
[20]
MENG X, LI G, GU L, et al. Comparative metabolomic and transcriptome analysis reveal distinct flavonoid biosynthesis regulation between petals of white and purple Phalaenopsis amabilis[J]. Journal of plant growth regulation, 2019, 39(2):823-840.
[21]
刘红, 魏晓羽, 马辉. 几种兰属地生种花瓣花色素组成分析[J]. 江苏农业学报, 2022, 38(6):1657-1677.
[22]
ZHAN X, QI J, ZHOU B, et al. Metabolomic and transcriptomic analyses reveal the regulation of pigmentation in the purple variety of Dendrobium officinale[J]. Scientific reports, 2020, 10(1).
[23]
ZHOU Z, YING Z, WU Z, et al. Anthocyanin genes involved in the flower coloration mechanisms of Cymbidium kanran[J]. Frontiers in plant science, 2021,12.
[24]
TATSUZAWA F, ICHIHARA K, SHINODA K, et al. Flower colours and pigments in Disa hybrid (Orchidaceae)[J]. South African journal of botany, 2010, 76(1):49-53.
[25]
QIU Y, CAI C, MO X, et al. Transcriptome and metabolome analysis reveals the effect of flavonoids on flower color variation in Dendrobium nobile Lindl[J]. Frontiers in plant science, 2023,14:1220507.
[26]
CHIOU C Y, PAN H A, CHUANG Y N, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars[J]. Planta, 2010, 232(4):937-948.
[27]
兰孔, 林榕燕, 樊荣辉, 等. 杂交兰花瓣类黄酮成分分析及其对花色的影响[J]. 西北植物学报, 2022, 42(10):1711-1719.
[28]
李文建, 沈永宝, 史锋厚, 等. 建兰花色形成的成分检测[J]. 南京林业大学学报(自然科学版), 2019, 43(4):57-62.
[29]
YANG F X, GAO J, WEI Y L, et al. The genome of Cymbidium sinense revealed the evolution of orchid traits[J]. Plant biotechnology journal, 2021, 19(12):2501-2516.
[30]
WU D, QU S, SHEN L, et al. Metabolomic analysis of the anthocyanins associated with different colors of Cymbidium goeringii in Guizhou, China[J]. Phyton, 2024, 93(7):1455-1466.
[31]
DENG X, HU C, XIE C, et al. Metabolomic and transcriptomic analysis reveal the role of metabolites and genes in modulating flower color of Paphiopedilum micranthum[J]. Plants, 2023, 12(10).
[32]
IWASHINA T. Contribution to flower colors of flavonoids including anthocyanins: A review[J]. Natural product communications, 2015, 10(3).
[33]
YIN X, WANG T, ZHANG M, et al. Role of core structural genes for flavonoid biosynthesis and transcriptional factors in flower color of plants[J]. Biotechnology & biotechnological equipment, 2021, 35(1):1214-1229.
[34]
刘恺媛, 王茂良, 辛海波, 等. 植物花青素合成与调控研究进展[J]. 中国农学通报, 2021, 37(14):41-51.
[35]
HANIFA Y R, GILDANTIA E, KASI P D, et al. Characterization of flower’s color based on CHS gene structure in Phalaenopsis ‘OX Queen’ and Dendrobium ‘Cheddi Jagan’ orchids[J]. Journal of tropical biodiversity & biotechnology, 2024, 9(3):91511.
[36]
LINGGABUWANA A, PUTRI S U, KURNIAWAN F Y, et al. Isolation and characterization of chalcone synthase (CHS) gene in variegated-flower of Dendrobium ‘Enobi’ and Phalaenopsis hybrid orchids[J]. HAYATI Journal of biosciences, 2023, 31(2):382-391.
[37]
LIU X J, CHUANG Y N, CHIOU C Y, et al. Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars[J]. Planta, 2012, 236(2):401-409.
[38]
李冬梅, 朱根发, 操君喜, 等. 兜兰查尔酮合成酶基因的克隆与表达分析[J]. 热带作物学报, 2012, 33(4):655-662.
[39]
李文建, 冯景, 贾文庆, 等. 建兰花色形成的分子调控机理研究[J]. 西北植物学报, 2018, 38(4):615-623.
[40]
KRIANGPHAN N, VUTTIPONGCHAIKIJ S, KITTIWONGWATTANA C, et al. Effects of sequence and expression of eight anthocyanin biosynthesis genes on floral coloration in four Dendrobium hybrids[J]. The horticulture journal, 2015, 84(1):83-92.
[41]
WHANG S S, UM W S, SONG I J, et al. Molecular analysis of anthocyanin biosynthetic genes and control of flower coloration by flavonoid 3′5′-hydroxylase (F3′5′H) in Dendrobium moniliforme[J]. Journal of plant biology, 2011, 54(3):209-218.
[42]
KHUMKARJORN N, THANONKEO S, YAMADA M, et al. Cloning and expression analysis of a flavanone 3-hydroxylase gene in Ascocenda orchid[J]. Journal of plant biochemistry and biotechnology, 2016, 26(2):179-190.
[43]
DONG X M, ZHANG W, TU M, et al. Spatial and temporal regulation of flower coloration in Cymbidium lowianum[J]. Plant, cell & environment, 2025, 48(6).
[44]
LEE W L, HUANG J Z, CHEN F C. Ectopic expression of Oncidium gower ramsey phytoene synthase gene caused pale flower and reduced leaf size in transgenic tobacco[J]. Journal of international cooperation, 2012, 7(2):133-150.
[45]
CHEN W H, HSU C Y, CHENG H Y, et al. Down regulation of putative UDP-glucose: Flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis[J]. Plant cell reports, 2011, 30(6):1007-1017.
[46]
HSIEH M H, LU H C, PAN Z J, et al. Optimizing virus-induced gene silencing efficiency with Cymbidium mosaic virus in Phalaenopsis flower[J]. Plant science, 2013,201-202:25-41.
[47]
Lou Y, Zhang Q, Xu Q, et al. PhCHS5 and PhF3′5′H genes over-expression in Petunia (Petunia hybrida) and Phalaenopsis (Phalaenopsis aphrodite) regulate flower color and branch number[J]. Plants, 2023, 12(11).
[48]
杨玉霞, 孙菲菲, 张昌伟. 蝴蝶兰全长cDNA文库构建及F3′H基因克隆[J]. 西北植物学报, 2013, 33(9):1731-1738.
[49]
WANG H M, TO K Y, LAI H M, et al. Modification of flower colour by suppressing β-ring carotene hydroxylase genes in Oncidium[J]. Plant biology, 2015, 18(2):220-229.
[50]
HARTMANN U, SAGASSER M, MEHRTENS F, et al. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes[J]. Plant molecular biology, 2005, 57(2):155-171.
[51]
许传俊, 黄珺梅, 黄雯, 等. 不同花色品种蝴蝶兰花色素苷含量分析及相关基因表达研究[J]. 华南师范大学学报(自然科学版), 2015, 47(3):93-99.
[52]
LI J WANG Z H. Integrative metabolomic and transcriptome analysis reveal the differential mechanisms of spot color in the lips of Dendrobium chrysotoxum[J]. Journal of plant biology, 2023, 66(4):359-371.
[53]
LI X, FAN J, LUO S, et al. Comparative transcriptome analysis identified important genes and regulatory pathways for flower color variation in Paphiopedilum hirsutissimum[J]. BMC Plant biology, 2021, 21(1):495.
[54]
SUN Y, CHEN G Z, HUANG J, et al. The Cymbidium goeringii genome provides insight into organ development and adaptive evolution in orchids[J]. Ornamental plant research, 2021, 1(1):1-13.
[55]
LI B J, ZHENG B Q, WANG J Y, et al. New insight into the molecular mechanism of colour differentiation among floral segments in orchids[J]. Communications biology, 2020, 3(1).
[56]
MA H, POOLER M, GRIESBACH R. Anthocyanin regulatory/structural gene expression in Phalaenopsis[J]. Journal of the American society for horticultural science, 2009, 134(1):88-96.
[57]
HSU C C, SU C J, JENG M F, et al. A HORT1 retrotransposon insertion in the PeMYB11 promoter causes harlequin/ black flowers in Phalaenopsis orchids[J]. Plant physiology, 2019, 180(3):1535-1548.
[58]
LU T W, CHEN W H, CHEN P Y, et al. Perturbation of periodic spot-generation balance leads to diversified pigmentation patterning of harlequin Phalaenopsis orchids: In silico prediction[J]. BMC Plant biology, 2024, 24(1).
[59]
ZHAO A, CUI Z, LI T, et al. mRNA and miRNA expression analysis reveal the regulation for flower spot patterning in Phalaenopsis ‘Panda’[J]. International journal of molecular sciences, 2019, 20(17):42-50.
[60]
HSU C C, CHEN Y Y, TSAI W C, et al. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp.[J]. Plant physiology, 2015, 168(1):175-191.
[61]
AI Y, ZHENG Q D, WANG M J, et al. Molecular mechanism of different flower color formation of Cymbidium ensifolium[J]. Plant molecular biology, 2023, 113(4):193-204.
[62]
郑燕, 赵凯, 曹映辉, 等. 建兰R2R3-MYB转录因子家族鉴定及表达分析[J]. 分子植物育种, 2023, 21(7):2089-2099.
[63]
CHEN J, BI Y Y, WANG Q Q, et al. Genome-wide identification and analysis of anthocyanin synthesis-related R2R3-MYB genes in Cymbidium goeringii[J]. Frontiers in plant science, 2022,13:1002043.
[64]
MA S, WANG M, LI P, et al. Transcriptome and metabolome analysis reveal the lip color variation in Cymbidium floribundum[J]. Ornamental plant research, 2024, 4(1):e109.
[65]
CUI X, DENG J, HUANG C, et al. Transcriptomic analysis of the anthocyanin biosynthetic pathway reveals the molecular mechanism associated with purple color formation in Dendrobium nestor[J]. Life, 2021, 11(2).
[66]
LI C, QIU J, DING L, et al. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals[J]. Plant physiology and biochemistry, 2017,112:335-345.
[67]
NAKATSUKA T, SUZUKI T, HARADA K, et al. Floral organ- and temperature-dependent regulation of anthocyanin biosynthesis in Cymbidium hybrid flowers[J]. Plant science, 2019,287.
[68]
ALBERT N W, ARATHOON S, COLLETTE V E, et al. Activation of anthocyanin synthesis in Cymbidium orchids: Variability between known regulators[J]. Plant cell, tissue and organ culture, 2009, 100(3):355-360.
[69]
丁灵. 蝴蝶石斛兰花色和花香形成相关基因的表达与分析[D]. 海口: 海南大学, 2016.
[70]
KIM Y J, PARK C J, RHO H M, et al. Night interruption and night temperature regulate flower characteristics in Cymbidium[J]. Korean journal of horticultural science and technology, 2012, 30(3):236-242.
[71]
PRATAMA A N, GRANDMOTTET F, KONGBANGKERD A, et al. Low-light intensity reprogramed flower pigmentation in Dendrobium Sonia via downregulation of dihydroflavonol 4-reductase and anthocyanidin synthase genes[J]. Scientia horticulturae, 2023,312.
[72]
LEE W L, HUANG J Z, CHEN L C, et al. Developmental and LED light source modulation of carotenogenic gene expression in Oncidium Gower Ramsey Flowers[J]. Plant molecular biology reporter, 2013, 31(6):1433-1445.
[73]
JIA N, WANG J, WANG Y, et al. The light-induced WD40-repeat transcription factor DcTTG1 regulates anthocyanin biosynthesis in Dendrobium candidum[J]. Frontiers in plant science, 2021,12.
[74]
AI Y, LI Z, SUN W H, et al. The Cymbidium genome reveals the evolution of unique morphological traits[J]. Horticulture research, 2021,8:255.
[75]
王世尧, 张果, 杨书才, 等. 基于表型的蝴蝶兰花色数量分类[J]. 热带作物学报, 2023, 44(11):2227-2235.
[76]
殷涵泰, 尹俊梅, 廖易, 等. 基于秋石斛花朵颜色、色素分布及表皮细胞形态的表型分类[J]. 园艺学报, 2021, 48(10):1907-1920.
PDF(1462 KB)

Accesses

Citation

Detail

Sections
Recommended

/