Research Progress on Soil-Borne Diseases of Patchouli and Its Rhizosphere Microecology Under Continuous Cropping

LIUHaitao, DENGQuanqing, GUYan, WANGJihua

Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 184-193.

PDF(3999 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(3999 KB)
Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 184-193. DOI: 10.11924/j.issn.1000-6850.casb2025-0354

Research Progress on Soil-Borne Diseases of Patchouli and Its Rhizosphere Microecology Under Continuous Cropping

Author information +
History +

Abstract

This article reviewed the occurrence of soil-borne diseases of Pogostemon cablin and research progress on its rhizosphere microecology under continuous cropping, aiming to provide a theoretical basis for alleviating continuous cropping obstacles. The main soil-borne diseases of P. cablin included bacterial wilt incited by Ralstonia solanacearum and root rot caused by Fusarium oxoysporum. Plant pathogens in P. cablin disrupted the rhizosphere microecological balance, inhibiting the growth and development of plants, reducing yield and medicinal compound accumulation, and directly impacting planting benefits. Meanwhile, continuous cropping of P. cablin induced allelochemical release from its roots, triggering soil acidification and nutrient imbalance that restructured rhizosphere microbial community. The imbalance of the rhizosphere microbial community was identified as a pivotal factor driving disease development in continuously cropped P. cablin. Beneficial rhizobacteria suppressed soil-borne pathogens through competitive exclusion, antimicrobial metabolite production, and induced systemic resistance (ISR) mechanisms, whereas synthetic microbial communities (SynComs) supplementation alleviated the occurrence of continuous cropping obstacles. Recent advancements in multi-omics technologies (e.g., genomics, metabolomics) and SynComs have revolutionized soil-borne disease research, offering novel strategies for pathogen control and sustainable agricultural practices. Future research must prioritize clarifying the pathogen pathogenesis mechanisms, optimizing the application of SynComs, and constructing a comprehensive control system to provide theoretical basis and technical support for the sustainable development of the P. cablin industry.

Key words

Pogostemon cablin / continuous cropping / soil-borne diseases / rhizosphere microecology / multi-omics technologies / synthetic microbial communities

Cite this article

Download Citations
LIU Haitao , DENG Quanqing , GU Yan , et al. Research Progress on Soil-Borne Diseases of Patchouli and Its Rhizosphere Microecology Under Continuous Cropping[J]. Chinese Agricultural Science Bulletin. 2026, 42(1): 184-193 https://doi.org/10.11924/j.issn.1000-6850.casb2025-0354

References

[1]
李楚, 荆文光, 莫小路, 等. 广藿香化学成分和药理作用研究进展及潜在质量标志物预测分析[J]. 中国药学杂志, 2023, 58(11):954-965.
[2]
包韵滋, 陈林源, 邱铠滢, 等. 广藿香种植生态因子分析与生态种植模式研究进展[J]. 广州中医药大学学报, 2024, 41(11):3084-3090.
[3]
黄文洁, 李明. 广藿香-薄荷轮作和广藿香连作对其品质及其根际土壤微生态的影响[J]. 西南农业学报, 2024, 37(2):276-285.
[4]
游川, 杨天杰, 周新刚, 等. 连作根系分泌物加剧土传病害的机制和缓解措施研究进展[J]. 土壤学报, 2024, 61(5):1201-1211.
[5]
CAO Y, SHEN Z, ZHANG N, et al. Phosphorus availability influences disease-suppressive soil microbiome through plant-microbe interactions[J]. Microbiome, 2024, 12(1):185.
[6]
SHI W, LI J, XIE S, et al. Selection of the dominant endophytes based on illumina sequencing analysis for controlling bacterial wilt of patchouli caused by Ralstonia solanacearum[J]. Plant disease, 2024, 108(4):996-1004.
[7]
徐燃, 贺红, 邓素坚, 等. 青枯菌侵染广藿香的组织病理学研究[J]. 广州中医药大学学报, 2013, 30(2):236-239.
[8]
陈旭玉, 甘炳春, 隋春, 等. 20份广藿香种质对青枯病的抗病性评价[J]. 西北农业学报, 2012, 21(1):170-174.
[9]
皮静, 严培文, 杜博兴, 等. 青枯雷尔氏菌运动性相关研究进展[J]. 植物医生, 2020, 33(5):18-21.
[10]
佘小漫, 何自福. 作物青枯病研究进展[J]. 广东农业科学, 2020, 47(12):82-89.
[11]
程小卿, 江浩铭, 崔业旋, 等. 内生真菌Alternaria sp. GHX-P17代谢产物防治广藿香青枯病及保护酶的变化[J]. 广西植物, 2023, 43(7):1244-1251.
[12]
杨玉秀, 贺红, 徐燃, 等. 广藿香青枯菌的PCR鉴定与寄主专化性研究[J]. 广州中医药大学学报, 2013, 30(4):566-570.
[13]
黄德锐, 张泳, 王邦伟, 等. 广藿香青枯病菌Kosakonia cowanii Pa82致病相关基因vgr G的功能鉴定[J]. 中药材, 2024(5):1079-1087.
[14]
席超越, 陈丽妃. 番茄青枯病病原菌生物学特性及致病机制研究进展[J]. 现代农业科技, 2024(17):94-100.
[15]
WU X, YUAN X L, ZHAI F F, et al. First report of root rot of Pogostemon cablin caused by Phytophthora palmivora in China[J]. Plant disease, 2016, 100(6):1249.
[16]
FANG Y, LI J, LI X, et al. Macrophomina vaccinii causes a basal stem and root rot of patchouli (Pogostemon cablin) in China[J]. Plant disease, 2022, 106(3):1067.
[17]
欧阳蒲月, 李亚萍, 莫小路. 广藿香资源调查、研究进展与发展趋势[J]. 大众科技, 2019, 21(8):55-57.
[18]
张佳宁, 谢田朋, 杨林桦, 等. 药用植物根腐病研究进展[J]. 中国野生植物资源, 2024, 43(6):60-67.
[19]
ZULFADLI Z, WASISTHA N I, OKTARINA H, et al. Pathogens causing wilt diseases in patchouli plant (Pogostemon cablin Benth.): A review on symptoms, bioecology, and management[J]. IOP conference series: Earth and environmental science, 2023, 1183(1):1-13.
[20]
董超, 方香玲. 植物病原真菌尖孢镰刀菌检测与定量研究进展[J]. 草地学报, 2021, 29(7):1599-1604.
[21]
陈晓霞, 于红豆, 李梦玮, 等. 基于文献计量分析的根腐病研究现状及趋势[J]. 应用与环境生物学报, 2024, 30(3):623-632.
[22]
李笑淳, 宋凯, 陈博, 等. 植物根际促生菌:作用机制与未来[J]. 激光生物学报, 2024, 33(3):193-200.
[23]
XU Y, WU Y G, CHEN Y, et al. Autotoxicity in Pogostemon cablin and their allelochemicals[J]. Revista brasileira de farmacognosia, 2015, 25(2):117-123.
[24]
瞿瑜婷, 张前前, 俞叶飞, 等. 根际微生态视角下药用植物连作障碍机制和缓解措施研究进展[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4):403-414.
[25]
王敏, 彭大榕, 曾吉兴, 等. 植物矿质营养与病害研究进展及展望[J]. 植物营养与肥料学报, 2024, 30(7):1339-1353.
[26]
李思邈, 庞佳音, 方香玲. 氮磷钾营养影响植物根部病害的研究进展[J]. 植物生理学报, 2023, 59(11):2011-2017.
[27]
刘晓凤, 严武平, 曹诗佳, 等. 连作对广藿香根际土壤理化性状和土壤酶活性的影响[J]. 分子植物育种, 2023, 21(18):6164-6170.
[28]
胡峻峰, 曾建荣, 刘键锺, 等. 广藿香间作生姜与豇豆对其根际微生物群落多样性的影响[J]. 中药材, 2022, 45(10):2316-2321.
[29]
FENG Z, LIANG Q, YAO Q, et al. The role of the rhizobiome recruited by root exudates in plant disease resistance: Current status and future directions[J]. Environmental microbiome, 2024, 19(1):91.
[30]
MA S, CHEN Q, ZHENG Y, et al. A tale for two roles: root-secreted methyl ferulate inhibits P. nicotianae and enriches the rhizosphere Bacillus against black shank disease in tobacco[J]. Microbiome, 2025, 13(1):33.
[31]
FANG H, GUO C, MEI X, et al. Light stress elicits soilborne disease suppression mediated by root-secreted flavonoids in Panax notoginseng[J]. Horticulture research, 2024, 11(10):e213.
[32]
JI X Y, YE C, KANG W, et al. Interspecific allelopathic interaction primes direct and indirect resistance in neighboring plants within agroforestry systems[J]. Plant communications, 2025, 6(1):101173.
[33]
吕柏辰, 孙海, 钱佳奇, 等. 药用植物根系分泌物与根际微生物相互作用及其在中药材生态种植中的应用[J]. 中国中药杂志, 2024, 49(8):2128-2137.
[34]
XU Y, YANG M, YIN R, et al. Autotoxin Rg1 induces degradation of root cell walls and aggravates root rot by modifying the rhizospheric microbiome[J]. Microbiology spectrum, 2021, 9(3):e167921.
[35]
YAN W, LIU X, CAO S, et al. Molecular basis of Pogostemon cablin responding to continuous cropping obstacles revealed by integrated transcriptomic, miRNA and metabolomic analyses[J]. Industrial crops & products, 2023,200:116862.
[36]
杨珍, 戴传超, 王兴祥, 等. 作物土传真菌病害发生的根际微生物机制研究进展[J]. 土壤学报, 2019, 56(1):12-22.
[37]
祝蕾, 严辉, 刘培, 等. 药用植物根际微生物对其品质形成的影响及其作用机制的研究进展[J]. 中草药, 2021, 52(13):4064-4073.
[38]
FANG J, XU F Z, ZHANG T, et al. Effects of soil microbial ecology on ginsenoside accumulation in Panax ginseng across different cultivation years[J]. Industrial crops & products, 2024,215:118637.
[39]
MUR L, SIMPSON C, KUMARI A, et al. Moving nitrogen to the centre of plant defence against pathogens[J]. Annals of botany, 2017, 119(5):703-709.
[40]
CUI B, PAN Q, CLARKE D, et al. Snitrosylation of the zinc finger protein SRG1 regulates plant immunity[J]. Nature communications, 2018, 9(1):4226.
[41]
WU D, WANG W, YAO Y, et al. Microbial interactions within beneficial consortia promote soil health[J]. The science of the total environment, 2023,900:165801.
[42]
GE J, LI D, DING J, et al. Microbial coexistence in the rhizosphere and the promotion of plant stress resistance: A review[J]. Environmental research, 2023,222:115298.
[43]
CARRIÓN V J, PEREZ-JARAMILLO J, CORDOVEZ V, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science, 2019,366:606-612.
[44]
高游慧, 郑泽慧, 张越, 等. 根际微生态防治作物土传真菌病害的机制研究进展[J]. 中国农业大学学报, 2021, 26(6):100-113.
[45]
SOUZA R D, AMBROSINI A, PASSAGLIA L M P. Plant growth-promoting bacteria as inoculants in agricultural soils[J]. Genetics and molecular biology, 2015, 38(4):401-419.
[46]
EISENREICH W, DANDEKAR T, HEESEMANN J, et al. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence[J]. Nature reviews. microbiology, 2010, 8(6):401-412.
[47]
李界秋, 宋文欣, 蒙姣荣, 等. 6株贝莱斯芽胞杆菌对土传病原菌的抑制活性及其作用机理[J]. 福建农业学报, 2022, 37(3):371-380.
[48]
乔欣蕾, 凡雪蕊, 霍晓毅, 等. 枯草芽胞杆菌拮抗尖孢镰刀菌的抑菌物质分析[J]. 农业生物技术学报, 2021, 29(10):1999-2007.
[49]
刘萍, 王祖华, 周炳艺, 等. 芍药根腐病拮抗内生细菌筛选及拮抗机制分析[J]. 经济林研究, 2024, 42(3):226-235.
[50]
邱薇, 刘磊, 康杰, 等. 假单胞菌属双组分信号转导系统调控吩嗪生物合成研究进展[J]. 微生物学通报, 2022, 49(1):352-362.
[51]
WEI Z, FRIMAN V, POMMIER T, et al. Rhizosphere immunity: targeting the underground for sustainable plant health management[J]. Frontiers of agricultural science and engineering, 2020, 7(3):317-328.
[52]
佐长赓, 王静怡, 牛新湘, 等. 内生菌与根际细菌对棉花的促生与诱导抗病作用[J]. 西南农业学报, 2022, 35(4):757-763.
[53]
CONTRERAS-CORNEJO H A, MACÍAS-RODRÍGUEZ L, DEL-VAL E, et al. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants[J]. FEMS microbiology ecology, 2016, 92(4):36.
[54]
SAMARAS A, ROUMELIOTIS E, NTASIOU P, et al. Bacillus subtilis MBI600 promotes growth of tomato plants and induces systemic resistance contributing to the control of soilborne pathogens[J]. Plants, 2021, 10(6):1113.
[55]
HASHEM A, TABASSUM B, FATHI A A E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress[J]. Saudi journal of biological sciences, 2019, 26(6):1291-1297.
[56]
张亮, 盛浩, 袁红, 等. 荧光假单胞菌诱导番茄抗枯萎病的ISR研究[J]. 土壤, 2018, 50(5):1055-1060.
[57]
李海鹏, 曹启民, 黄月华, 等. 青枯病发生的土壤影响因素及防治措施研究进展[J]. 江苏农业科学, 2023, 51(9):25-33.
[58]
王长义, 郝振萍, 陈丹艳, 等. 设施土壤连作障碍产生原因及防治方法综述[J]. 江苏农业科学, 2020, 48(8):1-6.
[59]
苏浩, 张锐澎, 吴思炫, 等. 连作障碍产生机理及防控现状[J]. 土壤, 2024, 56(2):242-254.
[60]
韦中, 沈宗专, 杨天杰, 等. 从抑病土壤到根际免疫:概念提出与发展思考[J]. 土壤学报, 2021, 58(4):814-824.
[61]
苏怀德. 青霉素发现及开发简史[J]. 中国药学杂志, 1988(8):494-497.
[62]
TORRES-RODRIGUEZ J, REYES-PÉREZ J, QUIÑONES-AGUILAR E, et al. Actinomycete potential as biocontrol agent of phytopathogenic fungi: Mechanisms, source, and applications[J]. Plants, 2022, 11(23):3201.
[63]
陈明月, 姜涛, 赵冬梅, 等. 先进的组学技术在植物抗病研究中的应用[J]. 中国农学通报, 2022, 38(24):86-91.
[64]
MENDES R, KRUIJT M, BRUIJN D I, et al. Deciphering the rhizosphere microbiome for disease suppressive bacteria[J]. Science, 2011,332:1097-1100.
[65]
WELLER D M, RAAIJMAKERS J M, GARDENER B B, et al. Microbial populations responsible for specific soil suppressiveness to plant pathogens[J]. Annual review of phytopathology, 2002,40:309-348.
[66]
黄曦, 许兰兰, 黄荣韶, 等. 枯草芽孢杆菌在抑制植物病原菌中的研究进展[J]. 生物技术通报, 2010(1):24-29.
[67]
高苇, 李宝聚, 孙军德, 等. 绿色木霉对黄瓜立枯丝核菌和尖孢镰刀菌的拮抗作用[J]. 中国蔬菜, 2008(6):9-12.
[68]
MAZZOLA M. Mechanisms of natural soil suppressiveness to soilborne diseases[J]. Antonie van Leeuwenhoek, 2002, 81(1-4):557-564.
[69]
CHA J Y, HAN S, HONG H J, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil[J]. The ISME journal, 2016, 10(1):119-129.
[70]
LI P D, ZHU Z R, ZHANG Y Z, et al. The phyllosphere microbiome shifts toward combating melanose pathogen[J]. Microbiome, 2022, 10(1):56.
[71]
LI M, HU J, WEI Z, et al. Synthetic microbial communities: sandbox and blueprint for soil health enhancement[J]. iMeta, 2024, 3(1):e172.
[72]
JING J, GARBEVA P, RAAIJMAKERS M J, et al. Strategies for tailoring functional microbial synthetic communities[J]. The ISME journal, 2024, 18(1):49.
[73]
DURÁN P, THIERGART T, GARRIDO-OTER R, et al. Microbial interkingdom interactions in roots promote Arabidopsis survival[J]. Cell, 2018, 175(4):973-983.
[74]
李凯航, 王浩臣, 程可心, 等. 全基因组关联分析研究植物与微生物组的互作遗传机制[J]. 生物技术通报, 2023, 39(2):24-34.
[75]
XIA X, WEI Q, WU H, et al. Bacillus species are core microbiota of resistant maize cultivars that induce host metabolic defense against corn stalk rot[J]. Microbiome, 2024, 12(1):156.
[76]
GU S, WEI Z, SHAO Z, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature microbiology, 2020, 5(8):1002-1010.
[77]
WANG L, ZHANG X, TANG C, et al. Engineering consortia by polymeric microbial swarmbots[J]. Nature communications, 2022, 13(1):3879.
[78]
ZHOU X, WANG J, LIU F, et al. Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease[J]. Nature communications, 2022, 13(1):7890.
[79]
EMMENEGGER B, MASSONI J, PESTALOZZI C M, et al. Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning[J]. Nature communications, 2023, 14(1):7983.
[80]
QIAO Y, WANG Z, SUN H, et al. Synthetic community derived from grafted watermelon rhizosphere provides protection for ungrafted watermelon against Fusarium oxysporum via microbial synergistic effects[J]. Microbiome, 2024, 12(1):101.
[81]
LI T, SHI X, WANG J, et al. Turning antagonists into allies: bacterial-fungal interactions enhance the efficacy of controlling Fusarium wilt disease[J]. Science advances, 2025, 11(7):eads5089.
[82]
LI C, HAN Y, ZOU X, et al. A systematic discussion and comparison of the construction methods of synthetic microbial community[J]. Synthetic and systems biotechnology, 2024, 9(4):775-783.
[83]
NORTHEN R T, KLEINER M, TORRES M, et al. Community standards and future opportunities for synthetic communities in plant-microbiota research[J]. Nature microbiology, 2024, 9(11):2774-2784.
PDF(3999 KB)

Accesses

Citation

Detail

Sections
Recommended

/