Effects of Particle Size on Composting Process and Compost Maturity of Sericulture Byproducts

ZHAOPei, SONGChanggui, XIEYong, WANGMei, MAJingqiu, WUJun, HUANGYue, HEJiayang, WANGXiaojing

Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 159-166.

PDF(1720 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1720 KB)
Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (1) : 159-166. DOI: 10.11924/j.issn.1000-6850.casb2025-0440

Effects of Particle Size on Composting Process and Compost Maturity of Sericulture Byproducts

Author information +
History +

Abstract

To promote the resource utilization of sericulture byproducts, this study investigated the effects of initial particle size of mulberry branches on the composting process and compost maturity by mixing mulberry branches and silkworm faeces in equal mass. The results showed that although smaller particle sizes (<1 cm) could better increase the compost piles temperature and maintain it at a higher level, while also effectively promoting the degradation of organic carbon, piles with larger particle sizes (>1 cm) had appropriate bulk densities, which significantly promoted the degradation of hemicellulose and cellulose during the composting process. These larger-particle-size piles also exhibited a greater decrease in C/N ratio, indicating more thorough decomposition of organic matter and higher maturity efficiency. After composting, group C (particle size>2 cm) had the highest contents humus, available nitrogen, phosphorus, potassium, and total phosphorus and potassium, resulting in the best compost quality. Overall, controlling the mulberry branch particle sizes at 2-7 cm in compost piles made from a mixture of mulberry branches and silkworm faeces (at equal mass) facilitates the degradation of (hemi) cellulose and improves of compost quality.

Key words

sericulture byproducts / composting / mulberry branch particle size / silkworm faeces / compost maturity / physicochemical properties / cellulose degradation

Cite this article

Download Citations
ZHAO Pei , SONG Changgui , XIE Yong , et al . Effects of Particle Size on Composting Process and Compost Maturity of Sericulture Byproducts[J]. Chinese Agricultural Science Bulletin. 2026, 42(1): 159-166 https://doi.org/10.11924/j.issn.1000-6850.casb2025-0440

References

[1]
白雪, 何松涛, 李莉, 等. 广西桑枝蚕沙综合利用工程的实施成效及发展方向[J]. 广西农学报, 2014, 29(6):80-82.
[2]
袁琳. “虫”变“龙”的启示——广西蚕沙桑枝高效利用面面观[J]. 农家之友, 2014(8):11.
[3]
张璐. 园林绿化废弃物堆肥化的过程控制及其产品改良与应用研究[D]. 北京: 北京林业大学, 2015.
[4]
王亮. 城市垃圾好氧堆肥过程的动力学研究[D]. 长沙: 湖南大学,2006:30-35.
[5]
文昊深. 城市生活垃圾高温好氧堆肥工艺优化研究[D]. 重庆: 重庆大学,2004:35-38.
[6]
吴均, 黄传书, 刘艳, 赵珮, 等. 几种复合微生物发酵剂发酵废弃桑枝的比较研究[J]. 蚕学通讯, 2019, 39(3):9-14.
[7]
赵珮, 唐小平, 吴均, 等. 微生物及C/N比对果桑枝条堆肥腐熟的影响[J]. 农业工程, 2020, 10(6):51-56.
[8]
赵珮, 宋长贵, 吴均, 等. 添加鸡粪和菌剂对桑枝条堆肥腐熟效果及肥力的影响[J]. 蚕学通讯, 2023, 43(1):22-26.
[9]
李吉进. 畜禽粪便高温堆肥机理与应用研究[D]. 北京: 中国农业大学, 2004.
[10]
李磊, 王淑琦, 郭小平, 等. 初始粒径和外源添加剂对绿化废弃物堆肥腐熟效果的影响[J]. 环境工程学报, 2020, 14(10):2804-2812.
[11]
ZHANG L, SUN X Y. Effects of earthworm casts and zeolite on the two-stage composting of green waste[J]. Waste anagement, 2015,39:119-129.
[12]
ONWOSI O, IGBOKWE V C, ODIMBA J N, et al. Composting technology in waste stabilization: On the methods, challenges and future prospects[J]. Journal of environmental management, 2017,190:140-157.
[13]
鲍士旦. 土壤农化分析(第3版)[M]. 北京: 中国农业出版社, 2000.
[14]
杨冬艳, 王丹, 桑婷, 等. 粉碎粒径对番茄和辣椒秸秆堆肥木质纤维素降解特征的影响[J]. 中国土壤与肥料, 2024(2):210-219.
[15]
王引权. 葡萄冬剪枝条高温堆制化机理研究[D]. 兰州: 甘肃农业大学, 2005.
[16]
AGNEW J M, LEONARD J J. The physical properties of compost[J]. Compost science & utilization, 2003, 11(3):238-264.
[17]
BERNAL M P J, CEGARRA A, ROI G, et al. Composting of organic wastes as a strategy for producing high quality organic fertilizers[A].//In:MARTINEZ J, MAUDET M N.Proceedings of 8th International Conference on Management Strategies for Organic Waste Use in Agriculture[C]. 1999:171-183.
[18]
JUMNOODOO V, MOHEE R. Evaluation of FTIR spectroscopy as a maturity index for herbicide-contaminated composts[J]. International journal of environment and waste management, 2012, 9(1/2):89-99.
[19]
KARAK T, BHATTACHARYYA P, PAUL R K, et al. Evaluation of composts from agricultural wastes withfish pond sediment as bulking agent to improve compost quality[J]. Clean-soil air water, 2013, 41(7):711-723.
[20]
王海候, 何胥, 陶玥玥, 等. 添加不同粒径炭基辅料改善猪粪好氧堆肥质量的效果[J]. 农业工程学报, 2018, 34(9):224-232.
[21]
顾娟, 齐希光, 李秀芬, 等. 固态微生物菌剂的制备及其在好氧堆肥中的应用[J]. 环境工程学报, 2020, 14(1):253-261.
[22]
赵珮, 高琴琼, 朱红艳, 等. 桑枝和蚕沙的基础成分测定及堆肥试验[J]. 蚕学通讯, 2024, 44(1):28-34.
[23]
金龙, 赵由才. 计算机与数学模型在固体废弃物处理与资源化中的应用[M]. 北京: 化学工业出版社, 2006.
[24]
KULIKOWSKA D, KLIMIUK E. Organic matter transformations and kinetics during sewage sludge composting in a two-stage system[J]. Bioresource technology, 2011, 102(23):10951-10958
[25]
张高升. 城镇污泥粒径对蚯蚓堆肥的影响[D]. 兰州: 兰州交通大学, 2018
[26]
马秋颖, 王智, 徐道清, 等. 玉米秸秆收贮高效资源化利用模式分析[J]. 作物学报, 2017, 43(8):1190-1195.
[27]
张野, 王吉平, 苏天明, 等. 筛选微生物降解木质纤维素的研究进展[J]. 中国生物工程杂志, 2020, 40(6):100-105.
PDF(1720 KB)

Accesses

Citation

Detail

Sections
Recommended

/