Bibliometric Analysis of Soil-Acidification-Regulation Measures Based on CNKI Database

ZHOUJiahui, TANGPulin, ZHANGShiye, ZHANGAihua, WANGShuli, WEIHang, RENXinlong, GAOYugang, WANGYanfang

Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (2) : 203-210.

PDF(2613 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2613 KB)
Chin Agric Sci Bull ›› 2026, Vol. 42 ›› Issue (2) : 203-210. DOI: 10.11924/j.issn.1000-6850.casb2025-0472

Bibliometric Analysis of Soil-Acidification-Regulation Measures Based on CNKI Database

Author information +
History +

Abstract

To address the issue of intensifying soil acidification threatening agricultural production, this study systematically reviews the current status and trends of research on soil acidification regulation in China. Based on 386 Chinese core journal articles from the CNKI database (2004-2024) focusing on soil acidification regulation strategies, bibliometric analysis was conducted using CiteSpace 6.4R1 software from the perspectives of annual publication volume, research institutions, author collaboration, and keyword clustering. The results show that: (1) the development of this research field can be divided into three stages: slow growth from 2004 to 2015, stable fluctuation from 2016 to 2021, and rapid growth from 2022 to 2024. (2) Collaboration among institutions and authors presents a pattern of “local concentration but overall dispersion,” with Huazhong Agricultural University (18 articles) and Fujian Agriculture and Forestry University (9 articles) as core research institutions. Author collaboration is mainly characterized by small-scale clusters, reflecting relatively weak overall coordination. (3) Keyword clustering formed 14 core themes, including “lime amendment,” “biochar application”, “straw return”, and “microbial regulation”. In recent years, “biochar”, “microbial inoculants”, and “calcium-magnesium fertilizers” have emerged as research hotspots. Research on soil acidification regulation in China has shifted from a single chemical amendment approach to an integrated chemical-organic-biological regulation paradigm. Current studies focus on technological pathways and crop planting patterns adapted to different acidified soil characteristics, providing important bibliometric references and technical support for the precise management of soil acidification, cultivated land quality protection, and sustainable agricultural development in China.

Key words

quicklime / amendment / biochar / straw incorporation / microbial agent / calcium-magnesium fertilizer / CiteSpace / bibliometrics

Cite this article

Download Citations
ZHOU Jiahui , TANG Pulin , ZHANG Shiye , et al . Bibliometric Analysis of Soil-Acidification-Regulation Measures Based on CNKI Database[J]. Chinese Agricultural Science Bulletin. 2026, 42(2): 203-210 https://doi.org/10.11924/j.issn.1000-6850.casb2025-0472

References

[1]
徐影, 于镇华, 李彦生, 等. 土壤酸化成因及其对农田土壤-微生物-作物系统影响的研究进展[J]. 土壤通报, 2024, 55(2):562-572.
[2]
张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应[J]. 生态学杂志, 2019, 38(6):1900-1908.
自然条件下的土壤酸化是一个非常缓慢的过程。近几十年来,在人类活动的影响下,原本缓慢的自然酸化过程不断加快。土壤酸化加速带来的一系列负面效应正迫使人们必须对土壤酸化加以重视。本文首先介绍了土壤酸化的自然过程和人为因素引起的土壤酸化,阐述了土壤盐基饱和度、土壤酸缓冲体系、酸沉降、化学肥料、植物、土地利用方式等对土壤酸化的影响;然后总结了土壤酸化带来的一系列生态效应,如植物生长受到抑制、土壤生物群落结构改变、土壤重金属有效性升高、水体质量下降等;最后从施用酸性土壤改良剂和种植耐逆高效优质植物两个方面,论述了酸性土壤的可持续利用策略,并对土壤酸化将来的研究方向进行了展望。
[3]
王代长, 蒋新, 卞永荣, 等. 酸沉降下加速土壤酸化的影响因素[J]. 土壤与环境, 2002(2):152-157.
[4]
武菲, 赵彦锋, 张水清, 等. 农田土壤酸化成因及防治措施分析与展望[J]. 环境科学, 2026, 47(1):531-542.
[5]
马存金, 任士伟, 郑磊, 等. 硅钙钾镁肥用量对烟草根系发育及烟叶质量的影响[J]. 中国农学通报, 2020, 36(31):13-18.
[6]
ITICHA B, MOSLEY L M, MARSCHNER P. Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils[J]. Soil, 2024, 10(1):89-98.
[7]
DONG L X, XU J, LI Y, et al. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng[J]. Soil biology & biochemistry, 2018, 125(6):64-74.
[8]
NUZZO A, SATPUTE A, ALBRECHT U, et al. Impact of soil microbial amendments on tomato rhizosphere microbiome and plant growth in field soil[J]. Microbial ecology. 2020; 80 (2):398-409.
There is increased interest by the agricultural industry in microbial amendments that leverage natural beneficial interactions between plants and soil microbes to improve crop production. However, translating fundamental knowledge from laboratory experiments into efficient field application often has mixed results, and there is less clarity about the interaction between added microbes and the native microbial community, where microorganisms belonging to the same phylogenic clades often reside. In this study, four commercially available microbial amendments were examined in two greenhouse experiments using field soil to assess their impact on tomato plant growth and the native soil microbial communities. The amendments contained different formulations of plant growth-promoting bacteria (Lactobacilli, Rhizobia, etc.), yeasts, and mycorrhizal fungi. The application of the tested amendments in greenhouse conditions resulted in no significant impact on plant growth. A deeper statistical analysis detected variations in the microbial communities that accounted only for 0.25% of the total species, particularly in native taxa not related to the inoculated species and represented less than 1% of the total variance. This suggests that under commercial field conditions, additional confounding variables may play a role in the efficacy of soil microbial amendments. This study confirms the necessity of more in-depth validation requirements for the formulations of soil microbial amendments before delivery to the agricultural market in order to leverage their benefits for the producers, the consumers, and the environment.
[9]
WEI Z, GU Y, FRIMAN V, et al. Initial soil microbiome composition and functioning predetermine future plant health[J]. Science advances, 2019, 5(9):47-59.
[10]
ROSENSTOCK N P, STENDAHL J, VAN DER HEIJDEN G, et al. Base cations in the soil bank: Non exchangeable pools may sustain centuries of net loss to forestry and leaching[J]. Soil, 2019, 5(2):351-366.
. Accurately quantifying soil base cation pool sizes is\nessential to interpreting the sustainability of forest harvests from element\nmass-balance studies. The soil-exchangeable pool is classically viewed as\nthe bank of “available” base cations in the soil, withdrawn upon by plant\nuptake and leaching and refilled by litter decomposition, atmospheric\ndeposition and mineral weathering. The operational definition of this soil\nbank as the exchangeable (salt-extractable) pools ignores the potential role\nof “other” soil nutrient pools, including microbial biomass, clay\ninterlayer absorbed elements, and calcium oxalate. These pools can be large\nrelative to “exchangeable” pools. Thus neglecting these other pools in\nstudies examining the sustainability of biomass extractions, or need for\nnutrient return, limits our ability to gauge the threat or risk of\nunsustainable biomass removals. We examine a set of chemical extraction data\nfrom a mature Norway spruce forest in central Sweden and compare this\ndataset to ecosystem flux data gathered from the site in previous research.\nThe 0.2 M HCl extraction released large pools of Ca, K, Mg, and Na,\nconsiderably larger than the exchangeable pools. Where net losses of base\ncations are predicted from biomass harvest, exchangeable pools may not be\nsufficient to support more than a single 65-year forest rotation, but\nacid-extractable pools are sufficient to support many rotations of\nnet-ecosystem losses. We examine elemental ratios, soil clay and carbon\ncontents, and pool depth trends to identify the likely origin\nof the HCl-extractable pool. No single candidate compound class emerges, as very strongly supported by the data, as being the major constituent of the HCl-extractable fraction. A combination of microbial biomass, fine\ngrain, potentially shielded, easily weatherable minerals, and non-structural\nclay interlayer bound potassium may explain the size and distribution of the\nacid-extractable base cation pool. Sequential extraction techniques and\nisotope-exchange measurements should be further developed and, if possible,\ncomplemented with spectroscopic techniques to illuminate the identity of and\nflux rates through these important, and commonly overlooked, nutrient pools.
[11]
耿明昕, 关松, 孟维山, 等. 秸秆还田与生物炭施用影响黑土有机质并缓解土壤酸化[J]. 吉林农业大学学报, 2023, 45(2):178-187.
[12]
张永春, 汪吉东, 沈明星, 等. 长期不同施肥对太湖地区典型土壤酸化的影响[J]. 土壤学报, 2010, 47(3):465-472.
[13]
CHEN D L, WANG X X, CARRIÓN V J, et al. Acidic amelioration of soil amendments improves soil health by impacting rhizosphere microbial assemblies[J]. Soil biology & biochemistry, 2022, 167:108599-108599.
[14]
张祥, 王典, 姜存仓, 等. 生物炭及其对酸性土壤改良的研究进展[J]. 湖北农业科学, 2013, 52(5):997-1000
[15]
范贝贝, 彭宇涛, 潘成杰, 等. 矿物调理剂对酸性土壤酸度降低和菠菜镉累积的影响[J]. 中国农业大学学报, 2023, 28(5):96-105.
[16]
赵琳, 刘桂珍, 钱笑杰, 等. 炭基肥添加对蜜柚果园酸性土壤pH和交换性能的影响[J]. 水土保持学报, 2022, 36(3):244-251.
[17]
邓小华, 黄杰, 杨丽丽, 等. 石灰、绿肥和生物有机肥协同改良酸性土壤并提高烟草生产效益[J]. 植物营养与肥料学报, 2019, 25(9):1577-1587.
[18]
陈士更, 张民, 丁方军, 等. 腐植酸土壤调理剂对酸化果园土壤理化性状及苹果产量和品质的影响[J]. 土壤, 2019, 51(1):83-89.
[19]
孙瑶, 张培苹, 王洪章. 牡蛎类土壤调理剂对设施番茄酸化土壤化学性质及果品质量的影响[J]. 北方农业学报, 2017, 45(1):88-91.
[20]
廖萍, 刘磊, 何宇轩, 等. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(1):84-92.
[21]
吴林土, 徐火忠, 李贵松, 等. 微生物菌剂对松阳茶园土壤酸化改良及肥力提升的效果分析[J]. 浙江农业科学, 2022, 63(6):1245-1249.
为了扭转茶园土壤酸化及土壤肥力下降对茶叶生产带来的不利影响,于2017&#x02014;2019年,以浙江松阳茶园严重酸化土壤为研究对象,通过每年施用以芽孢杆菌和木霉菌为主要成分的微生物菌剂(90 kg&#x000b7;hm<sup>-2</sup>),跟踪测定微生物菌剂处理对山地、梯田和水田等不同茶园土壤理化性质的影响。结果发现,微生物菌剂施用后,试验区山地茶园土壤pH从2017年的4.21提高到2019年的4.62,梯田茶园土壤pH从2017年的3.58提高到2019年的3.94,水田茶园土壤pH从2017年的3.47提高到2019年的3.76,对照区茶园土壤pH无显著变化;有机质、全氮、有效磷、速效钾等土壤养分指标显著提高,土壤重金属铅含量显著下降。连续施用微生物菌剂可有效阻控松阳茶园土壤酸化,对土壤肥力具有显著的提升效果。
[22]
邓琳璐, 王继红, 刘景双, 等. 休耕轮作对黑土酸化的影响[J]. 水土保持学报, 2013, 27(3):184-188.
[23]
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2):242-253
科学知识图谱的概念和CiteSpace工具自引入国内学术界,就迅速得到了大量关注,相关文献犹如雨后春笋般见诸于国内各种情报学期刊。但我们通过阅读国内500多篇应用CiteSpace工具的论文,发现存在知识可视化工具“滥用”和“误用”的现象,这显示出学界对于该工具的方法论功能认识不足。本文从CiteSpace工具的设计理念、理论基础、使用流程和功能应用四个方面进行较为深入的阐释,以期国内学者能加深对该工具的理解,并能将其更有效地灵活应用于科学研究工作中。
[24]
蔡泽江, 孙楠, 王伯仁, 等. 长期施肥对红壤pH、作物产量及氮、磷、钾养分吸收的影响[J]. 植物营养与肥料学报, 2011, 17(1):71-78.
[25]
赵晓红, 张佳腾, 毛云飞, 等. 胶东富士果园土壤酸化定位检测及对果实品质的影响[J]. 应用与环境生物学报, 2019, 25(6):1359-1364.
[26]
郑诗樟. 硫肥对土壤性质、重金属形态和作物生长的影响[D]. 武汉: 华中农业大学, 2012.
[27]
刘晓迪. 丛枝菌根对低pH的响应及植物激素的调控模式研究[D]. 广州: 华南农业大学, 2020.
[28]
曲晶晶, 郑金伟, 郑聚锋, 等. 小麦秸秆生物质炭对水稻产量及晚稻氮素利用率的影响[J]. 生态与农村环境学报, 2012, 28(3):288-293.
[29]
赵鹏, 陈阜. 秸秆还田配施化学氮肥对冬小麦氮效率和产量的影响[J]. 作物学报, 2008(6):1014-1018.
[30]
赵亚丽, 郭海斌, 薛志伟, 等. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响[J]. 应用生态学报, 2015, 26(6):1785-1792.
Abstract
通过两年田间裂区设计试验,研究了不同土壤耕作方式(常规耕作、深耕、深松)与秸秆还田(秸秆还田、秸秆不还田)对冬小麦-夏玉米一年两熟农田土壤微生物数量、酶活性和作物产量的影响.结果表明: 深松(耕)和秸秆还田不仅降低了土壤容重,提高了土壤有机碳含量,而且增加了土壤微生物数量、土壤酶活性和作物产量,且二者对夏玉米季的影响大于冬小麦季.与常规耕作+无秸秆还田相比,深耕+秸秆还田、深松+秸秆还田处理的20~30 cm土壤容重分别降低8.5%和6.6%,土壤有机碳含量分别提高14.8%和12.4%,土壤微生物数量、土壤酶活性分别提高45.9%、33.9%和34.1%、25.2%,作物产量分别提高18.0%和19.3%,且两处理间无显著差异.说明土壤深松(耕)结合秸秆还田有利于作物产量、土壤微生物数量和酶活性的提高.
[31]
文炯, 李祖胜, 许望龙, 等. 生石灰和钙镁磷肥对晚稻生长及稻米镉含量的影响[J]. 农业环境科学学报, 2019, 38(11):2496-2502.
[32]
吕金岭, 李太魁, 寇长林. 生物质炭和微生物菌肥对酸化黄褐土农田土壤改良及玉米生长的影响[J]. 河南农业科学, 2021, 50(6):61-69.
为应对黄褐土农田土壤已经存在的酸化问题,探究合适的调控方法,以酸化黄褐土农田土壤为研究对象,设置不施肥(CK)、传统施肥(CT)、微生物菌肥(WJ)、高量(T<sub>20</sub>,炭∶土=1∶20)和低量(T<sub>200</sub>,炭∶土=1∶200)生物质炭添加5种处理,采用桶栽试验开展玉米季土壤酸化调控研究。结果表明,与CK相比,CT处理在玉米收获后土壤pH值和土壤有机质(SOM)、交换性钙离子、交换性镁离子、交换性钠离子含量均无显著变化(P&gt;0.05),说明常规施肥方式不利于酸化黄褐土土壤改良。而WJ、T<sub>20</sub>、T<sub>200</sub>处理土壤pH值和SOM含量均较CK显著提升,其中pH值在玉米收获后分别达到4.80、6.45、5.92,SOM含量分别达到14.5、26.5、17.3 g/kg,说明生物质炭和微生物菌肥添加可以显著缓解酸化,改善黄褐土土壤质量。同时,WJ、T<sub>20</sub>和T<sub>200</sub>处理土壤交换性钾离子、交换性钠离子、交换性钙离子和交换性镁离子含量显著高于CK和CT处理,说明添加微生物菌肥和生物质炭可有效固持黄褐土土壤中关键盐基离子。不同处理玉米关键生长期的光合指标显示,WJ、T<sub>20</sub>和T<sub>200</sub>处理玉米大喇叭口期叶片光合速率(Pn)、气孔导度(Gs)、胞间CO<sub>2</sub>浓度(Ci)、蒸腾速率(Tr)和灌浆期叶片Pn、Gs、Tr均显著高于CK和CT处理,说明添加微生物菌肥和生物质炭不仅改善了黄褐土土壤酸化问题,而且提升了玉米的光合生理指标。且T<sub>20</sub>处理玉米生长季光合指标(Pn、Gs、Ci和Tr)、土壤pH值、玉米地上部干质量和根干质量等指标均较T<sub>200</sub>处理显著提升,说明加大生物质炭施用量可能更有益于黄褐土土壤酸化的缓解。综上,添加生物质炭和微生物菌肥是改良酸化黄褐土农田土壤的有效手段,而加大生物质炭用量可以进一步提升改良效果。
[33]
王丙磊, 王冲, 刘萌丽. 蚯蚓对土壤-植物系统生态修复作用研究进展[J]. 应用生态学报, 2021, 32(6):2259-2266.
土壤-植物系统是生物圈的基本结构单元,土壤与植物之间存在密切的相互反馈。土壤退化导致植物面临各种非生物胁迫,植物的生理代谢遭到干扰,养分获取受到抑制。蚯蚓被称为“生态系统的工程师”。蚯蚓能够通过调控土壤物理-化学-生物学特性,改良退化土壤(盐碱土、重金属和有机污染物污染土壤),缓解植物所受胁迫,增加土壤养分有效性,促进植物生长,并通过自身分泌的信号物质提高植物的抗逆性。蚯蚓对土壤-植物系统的生态修复作用,对于改善植物生长环境、维持土壤生态系统健康和稳定具有重要意义。
PDF(2613 KB)

Accesses

Citation

Detail

Sections
Recommended

/