Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
目次

Principle and Methodology of QTL Analysis in Crop

Expand

Online published: 2005-01-04

Abstract

Most agronomic traits are quantitative traits. Mapping of quantitative trait loci (QTL) is based on Morgan linked inheritance principle. QTL mapping populations include the primary mapping population, the secondary mapping population and the advanced mapping population. Methods of QTL analysis include the single marker mapping, the interval mapping, the composite interval mapping and the mixed linear model. The precise of QTL mapping are affected by the population size, analysis method, QTL distribution and so on. Some disadvantages are found in traditional mapping populations and analysis methods, so new mapping populations and new methods are need in future QTL analysis.

Cite this article

Xi Zhangying . Principle and Methodology of QTL Analysis in Crop[J]. Chinese Agricultural Science Bulletin, 2005 , 21(1) : 88 -88 . DOI: 10.11924/j.issn.1000-6850.050188

References

1Paterson A H, Lander E S, Hewitt J D, et al. Resolution of quantitative traits into Mendelian factors, using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335:721~726
2席章营, 张桂权. SSR标记及其在作物遗传育种中的应用. 河南农业大学学报,2002,36(3):293~297
3Harushimay A Y, Yano M, Shomura A, et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 1998,148:479~494
4Mccouch S R, Teytelman L, Xu Y, et al. Development and mapping of 2240 new SSR markers for rice (Oryza Sativa. L). DNA research, 2002, 9:199~207
5Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121:185~199
6Lu C F, Shen L H, Tan Z B, et al. Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled-haploid population. Theor Appl Genet, 1997, 94: 145~150
7Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA. 1993, 90: 10972~10976
8Jiang C J, Zeng Z B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics, 1995,140:1111~1127
9Kao C H, Zeng Z B, Teasdale R D. Multiple intervals mapping for quantitative loci. Genetics, 1999, 152:1203~1216
10 Darvasi A A, Weinreb V, Minke J I, et al. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics, 1993, 134: 943~951
11 Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica, 1994, 79: 175~179
12 Tanksley S D, Grandillo S, Fulton T M, et al. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wilds relative L Pimpinellfolium. Theor Appl Genet, 1996, 92:213~224
13 Doi K, Iwata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of Japonica rice (O. sativa L.). Rice Genetics Newsletter, 1997, 14: 39~41
14 Tuinstra M R, Ejeta G, Goldsbrough P B. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet, 1997, 95:1005~1011
15 Yamamoto T, Kuboki Y, Lin S Y, et al. Fine mapping of quantitative trait loci Hd1, Hd2, and Hd3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998,97: 37~44
16 Jeuken M J W, Linshout P. Future perspectives of Backcross Inbred Lines for exploitation of wild germplasm: a case study on Lactuca saligna as a donor for quantitative resistance to lettuce downy mildew. Eucarpia Leafy Vegetables, Noordwijkerhout, The Netherlands, 2003, 69~74
17 Yano M, Kojima S, Takahashi Y, et al. Genetic control of flowering time in rice, a short-day plant. Plant physiology, 2001, 127:1425~1429
18 何风华. 水稻单片段替换系群体的建立及QTL分析:[博士学位论文].广州:华南农业大学, 2003.1~73
19 Talukdar A. Development of single segment substitution lines (SSSLs) and mapping of QTLs in rice (Oryza sativa L.):[博士学位论文]. 广州:华南农业大学, 2003.1~90
20 席章营. 基于水稻单片段代换系的QTL鉴定与定位:[博士学位论文].广州:华南农业大学, 2004.1~74
21 惠大丰,姜长鉴,莫惠栋. 数量性状基因图谱构建方法的比较.作物学报,1997,23(2):129~136
22 Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994,136:1457~1468
23 Kao C H, Zeng Z B. General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics, 1997,53:653~665
24 Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative loci. Genetics, 1999,152:1203~1216
25 朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(自然科学版),1999,33(3):327~335
26 Hyne V, Kearsey M J, Pike D J, et al. QTL analysis: unreliability and bias in estimation procedures. Molecular Breeding. 1995,1:273~282
27 吴为人,李维明,卢浩然.数量性状基因座的动态定位策略.生物数学学报,1997,12(5):490~495
28 Wu W R, Li W M, Tang D Z, et al. Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics, 1999,151:297~303
29 Yan J Q, Zhu J, He C X. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa. L). Theor Appl Genet, 1998,97:267~274
30 Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locusin rice, is closely related to the arabidopsis flowering time gene CONSTANS. The Plant Cell, 2000, (12): 2473~2483
31 Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild –species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene.Proceedings of the National Academy of Science of the United States of America, 2000, 97:4718~4723
32 Frary A, Nesbitt T C, Frary A, et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289:85~88
33 Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Biology, 1997,35:145~153
34 Li Z K, Pinson R M, Park W D, et al. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997,145:453~465
35 余四斌,李建雄,许才国,等.上位性效应是水稻杂种优势的重要遗传基础.中国科学(C辑),1998,28(4):333~341
36 Yamamoto T, Lin H X, Sasaki T, et al. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000,154: 885~891
37 Xiao J, Li J, Yuan L, et al. Identification of QTL affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996, 92:230~244
38 Lin H X, Qian H R, Zhuang J Y, et al. RFLP mapping of QTL for yield and related characters in rice (Oryza Sativa L.). Theor Appl Genet, 1996, 92:920~927
39 Zhuang J Y, Lin H X, Lu J, et al. Analysis of QTL×environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997,95:799~808
Options
Outlines

/