2024 , Vol. 14 >Issue 4: 21 - 25
DOI: https://doi.org/10.11923/j.issn.2095-4050.cjas2023-0108
Study of Different Micronutrients on Yield and Physiological Indicators of Brassica napus
Received date: 2023-04-24
Revised date: 2023-06-30
Online published: 2024-04-17
Rapeseed is the largest self-produced plant oil source in China, which is crucial for ensuring the safety of edible oil in China. However, the self-sufficiency rate of total rapeseed production is severely insufficient, so high yield and high efficiency cultivation measures are urgently needed to increase yield. Current research was mostly focused on traditional fertilizers such as nitrogen, phosphorus and potassium, with less research on micro fertilizers. This study used Brassica napus ‘Fanming 1’ as the experimental material to measure the physiological and biochemical indicators of the entire growth period and the yield traits under different micro-fertilizer conditions, and conducted correlation analysis between them. The results showed that the activities of peroxidase and catalase in leaves at 5-6 leaf stage and superoxide dismutase in flowers at flowering stage were more than 0.8, indicating that there had a high correlation, which could be used to predict the rapeseed yield. The fertilization conditions may increase the rapeseed yield when the POD and CAT activities in the leaves during the 5-6 leaf stage and the SOD activity in the flowers during the flowering stage were greater than 0.8, and the chlorophyll content in the flowers was greater than 0.9. The results of this study provided a reference for screening suitable micronutrient fertilizers and high-yield cultivation for rapeseed growth.
Key words: rapeseed; micronutrient fertilizer; peroxidase; superoxide dismutase; catalase
ZHAO Peidong , ZHANG Wei , LIU Yingxia , ZHANG Zhenqian . Study of Different Micronutrients on Yield and Physiological Indicators of Brassica napus[J]. Journal of Agriculture, 2024 , 14(4) : 21 -25 . DOI: 10.11923/j.issn.2095-4050.cjas2023-0108
表1 微肥对POD活性的影响 U/g |
肥料种类 | 幼苗期 | 5~6叶期 | 蕾薹期 | 花期(花) | 花期(叶) | 角果皮 | 种子 |
---|---|---|---|---|---|---|---|
CK | 32.32bc | 25.79b | 60.17b | 89.04e | 31.53c | 71.54bc | 18.15a |
A3 | 27.12d | 25.11b | 58.04b | 168.4a | 38.97a | 68.60cd | 13.74b |
B3 | 30.64c | 27.70b | 66.17a | 135.5b | 34.99b | 75.12a | 13.50b |
C3 | 34.52ab | 20.48c | 59.13b | 138.8b | 33.62bc | 74.54ab | 17.67a |
D1 | 33.10bc | 38.44a | 64.46a | 107.1c | 31.48c | 66.28d | 17.89a |
E1 | 36.47a | 21.49c | 60.29b | 102.4d | 32.22bc | 63.82e | 11.98b |
注:同列中不同小写和大写英文字母分别表示在0.05水平上差异显著。下同。 |
表2 微肥对CAT活性的影响 U/(g FW min) |
肥料 种类 | 幼苗期 | 5~6叶期 | 蕾薹期 | 花期(花) | 花期(叶) | 角果皮 | 种子 |
---|---|---|---|---|---|---|---|
CK | 31.08c | 40.80e | 100.4d | 8.55a | 155.6b | 55.26d | 6.15a |
A3 | 30.48c | 74.10a | 104.8c | 5.63b | 122.8d | 52.98d | 5.56a |
B3 | 45.54a | 65.62b | 104.7c | 8.48a | 142.6c | 58.36c | 5.41a |
C3 | 45.42a | 65.10b | 106.9c | 8.23a | 93.4e | 76.39a | 7.3a |
D1 | 40.74b | 45.22d | 116.3b | 7.11a | 172.4a | 74.55a | 5.48a |
E1 | 36.96b | 59.17c | 121.1a | 4.62b | 172.0a | 66.08b | 6.33a |
表3 微肥对SOD活性的影响 U/g |
肥料种类 | 幼苗期 | 5~6叶期 | 蕾薹期 | 花期(花) | 花期(叶) | 角果皮 | 种子 |
---|---|---|---|---|---|---|---|
CK | 105.08e | 185.01c | 372.85e | 671.25a | 182.85d | 372.85e | 167.92b |
A3 | 124.30c | 229.60b | 402.24c | 648.25b | 243.41b | 402.24c | 171.96a |
B3 | 100.26f | 163.85e | 459.61a | 649.38b | 248.16a | 459.61a | 171.49a |
C3 | 192.92a | 173.25d | 410.57b | 620.67c | 164.17e | 410.57b | 144.00d |
D1 | 120.88d | 244.38a | 382.56d | 581.75e | 183.49d | 382.56d | 172.47a |
E1 | 174.41b | 230.83b | 385.49d | 606.12d | 201.89c | 385.49d | 151.63c |
表4 微肥对可溶性糖含量的影响 mg/g |
肥料种类 | 幼苗期 | 5~6叶期 | 蕾薹期 | 花期(花) | 花期(叶) | 角果皮 | 种子 |
---|---|---|---|---|---|---|---|
CK | 1.40a | 3.85a | 6.95a | 4.22a | 2.60a | 0.35a | 4.68a |
A3 | 1.36a | 4.41a | 5.43a | 4.07a | 4.41a | 0.42a | 4.46a |
B3 | 1.73a | 3.94a | 7.77a | 4.65a | 4.21a | 0.58a | 6.79a |
C3 | 2.90a | 3.47a | 7.90a | 4.11a | 2.01b | 0.50a | 2.64b |
D1 | 3.30a | 4.31a | 7.72a | 4.02a | 4.11a | 0.36a | 6.99a |
E1 | 1.66a | 3.93a | 7.30a | 4.94a | 5.18a | 0.24a | 5.66a |
表5 微肥对可溶性蛋白含量活性的影响 mg/g |
肥料种类 | 幼苗期 | 5~6叶期 | 蕾薹期 | 花期(花) | 花期(叶) | 角果皮 | 种子 |
---|---|---|---|---|---|---|---|
CK | 6.01a | 8.22a | 4.76a | 8.00a | 7.16a | 4.81a | 17.9a |
A3 | 7.13a | 8.74a | 4.93a | 8.13a | 6.38a | 3.47a | 17.2a |
B3 | 6.34a | 7.68a | 6.49a | 6.66a | 8.47a | 4.64a | 16.9a |
C3 | 8.13a | 8.24a | 6.82a | 7.37a | 8.41a | 4.11a | 17.2a |
D1 | 8.13a | 8.02a | 5.06a | 8.85a | 8.13a | 3.52a | 16.8a |
E1 | 8.22a | 9.34a | 6.11a | 6.04a | 6.93a | 3.22a | 16.5a |
表6 微肥对MDA含量的影响 μmol/mL |
肥料种类 | 幼苗期 | 5~6叶期 | 蕾薹期 | 花期(花) | 花期(叶) | 角果皮 | 种子 |
---|---|---|---|---|---|---|---|
CK | 0.214a | 0.224a | 0.776a | 0.496a | 0.586a | 0.801a | 0.232a |
A3 | 0.246a | 0.275a | 0.962a | 0.388a | 0.449a | 0.922a | 0.296a |
B3 | 0.143a | 0.293a | 0.675a | 0.381a | 0.435a | 0.970a | 0.102a |
C3 | 0.114a | 0.241a | 0.761a | 0.327a | 0.475a | 0.929a | 0.257a |
D1 | 0.278a | 0.276a | 0.634a | 0.309a | 0.503a | 0.905a | 0.118a |
E1 | 0.124a | 0.202a | 0.698a | 0.449a | 0.423a | 0.958a | 0.117a |
表7 产量与生理生化指标的相关性分析 |
生理生化指标 | 线性拟合公式 | 相关系数 |
---|---|---|
POD(花/花期) | y=115.53x-2935.9 | R²=0.801 |
CAT(叶片/5~6叶期) | y=46.655x-1176.4 | R²=0.816 |
SOD(花/花期) | y=134.55x-2949.7 | R²=0.941 |
[1] |
杨文钰, 屠乃美. 作物栽培各论南方本(第三版)[M]. 北京: 中国农业出版社, 2021:1-2.
|
[2] |
常涛, 程潜, 张振乾, 等. 高含油量油菜新品种选育研究进展[J]. 分子植物育种, 2019, 17(13):4424-4430.
|
[3] |
王凤文. 微肥对小油菜微量元素吸收特性的影响[J]. 内蒙古农业科技, 2010(4):67-68,95.
|
[4] |
|
[5] |
|
[6] |
IMRAN,
|
[7] |
黄窈军, 谢炜, 倪中应, 等. 水溶硼肥喷施在油菜浙油50上的应用效果[J]. 浙江农业科学, 2021, 62(11):2148-2149,2151.
|
[8] |
张衡锋, 张焕朝, 韦庆翠, 等. 4种微肥对番红花生长、品质及产量的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(1):169-173.
|
[9] |
|
[10] |
|
[11] |
常涛, 张振乾, 陈浩, 等. 不同含油量生理生化指标和种皮结构分析[J]. 分子植物育种, 2019, 17(23):7871-7878.
|
[12] |
常涛, 谢鑫, 官梅, 等. 不同微肥处理下油菜产量与高光谱反射率关系分析[J]. 光谱学与光谱分析, 2021, 41(2):552-557.
|
[13] |
萧浪涛, 王三根. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2014:110-114.
|
[14] |
王寅, 鲁剑巍. 中国冬油菜栽培方式变迁与相应的养分管理策略[J]. 中国农业科学, 2015, 48(15):2952-2966.
|
[15] |
余涛. 植物逆境相关基因的克隆、表达及功能分析[D]. 武汉: 武汉大学, 2004.
|
[16] |
郑瑞, 师尚礼, 马史琛. 苜蓿、小麦自毒及他感作用机理[J]. 草业科学, 2019, 36(3):849-860.
|
[17] |
白鹏, 冉春艳, 谢小玉. 干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响[J]. 中国农业科学, 2014, 47(18):3566-3576.
|
[18] |
姚磊. 大豆抗氧化多糖制备表征及对辐射诱导氧化应激抑制作用[D]. 哈尔滨: 哈尔滨工业大学, 2014.
|
[19] |
张晓红, 冯梁杰, 杨特武, 等. 冬季低温胁迫对油菜抗寒生理特性的影响[J]. 植物生理学报, 2015, 51(5):737-746.
|
[20] |
刘海卿, 孙万仓, 刘自刚, 等. 北方寒旱区白菜型冬油菜抗寒性与抗旱性评价及其关系[J]. 中国农业科学, 2015, 48(18):3743-3756.
|
[21] |
杨顺强. 不同禾本科牧草在干旱胁迫和低温胁迫下的生理响应[D]. 杨陵: 西北农林科技大学, 2008.
|
[22] |
刘林波, 孙万仓, 刘自刚, 等. 白菜型冬油菜抗寒相关生理生化性状的配合力和遗传效应[J]. 中国油料作物学报, 2015, 37(6):772-779.
|
[23] |
陆志峰, 任涛, 鲁剑巍, 等. 缺钾油菜叶片光合速率下降的主导因子及其机理[J]. 植物营养与肥料学报, 2016, 22(1):122-131.
|
[24] |
马霓, 肖圣元, 张明海, 等. 栽培方式对油菜'中双11'生长及收获特性的影响[J]. 湖北农业科学, 2011, 50(2):244-247.
|
[25] |
刘婷婷, 孙盈盈, 曹石, 等. 油菜抗裂角性状研究进展[J]. 作物杂志, 2014(3):5-9.
|
/
〈 |
|
〉 |